Characteristics of ${\delta}$-Endotoxin Protein Produced from Bacillus thuringiensis subsp. kurstaki KB099 Isolate Showing High Bioactivity against Spodoptera litura

담배거세미나방(Spodoplera lilura)에 높은 살충활성을 나타내는 Bacillus thuringiensis subsp. kurstaki KB099 균주의 내독소 단백질 특성

  • Jung, Sun-Young (Agro-Materials Safety Evaluation Division, National Academy of Agricultural Science Department of Agro-Food Safety, Rural Development Adminstration) ;
  • Seo, Mi-Ja (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Youn, Young-Nam (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Yu, Yong-Man (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University)
  • 정선영 (농촌진흥청 국립농업과학원 농자재평가과) ;
  • 서미자 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 윤영남 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 유용만 (충남대학교 농업생명과학대학 응용생물학과)
  • Received : 2010.10.09
  • Accepted : 2010.11.30
  • Published : 2010.12.31

Abstract

The characteristics of parasporal inclusion body from Bacillus thuringiensis subsp. kurstaki KB099 isolate which is high bioactive to the tobacco cutworm, Spodoptera litura, were examined. Parasporal inclusion of B. thuringiensis subsp. kurstaki KB099 isolate showed only 1 band at 130 kDa compared with B. thuringiensis subsp. kurstaki HD-l isolate producing 2 protein bands at 130 kDa and 60 kDa from by SDS-PAGE analysis without any enzyme treatment. Also, we confirmed that gut extract of sensitive S. litura KB099 isolate had digested only 60 kDa ${\delta}$-endotoxin protein. When the digestive enzyme of sensitive insect responsible for parasporal inclusion from KB099 and HD-l isolate was treated to each of them, protein band 60 KDa of KB099 was maintained up to 12 hours but all bands of HD-l were disappeared within 6 hours. In KB099 isolate, 6 genes (Cry1Aa, Cry1Ab, Cry1Ac, Cry1C, Cry1D and Cry1I) were identified by PCR analysis. Also, $Cry^-$ mutant of KB099 isolate was investigated by phase- contrast microscope, SDS-PAGE and PCR.

주요 농업해충인 담배거세미나방에 대하여 높은 생물활성을 보이는 Bacillus thuringiensis subsp. kurstaki KB099 균주의 내독소단백질의 특성이 검토되었다. 이 균주의 내독소단백질은 효소 처리 없는 SDS-PAGE 결과 HD-l 균주에서는 일부 용해되어 130 kDa과 60 kDa의 두 개의 단백질밴드가 나타났으나 KB099균주에서는 용해되지 않고 130kDa의 밴드만이 관찰되었다. KB099균주의 내독소단백질에 감수성 해충인 담배거세미나방의 중장액으로 소화하였을 때에는 약 60 kDa 단백질밴드가 형성됨을 확인하였다. 또한 두 균주의 각각의 내독소단백질에 감수성해충의 소화액으로 반응시켰을 때 생물활성이 약했던 HD-l균주는 약6시간 만에 주요 밴드가 사라지는데 비해 활성이 강한 KB099균주는 12시간이상 까지도 활성밴드가 유지되다가 24시간 정도에서 밴드가 사라졌다. KB099균주가 생산하는 내독소단백질 유전자의 탐색을 위한 PCR실험에서 Cry1Aa, Cry1Ab, Cry1Ac, Cry1C, Cry1D 그리고 Cry1I 등 6개의 유전자가 존재함을 확인하였다.

Keywords

References

  1. Aronson, A. I., E.-S. Han, W. McGaughey and D. Johnson (1991) The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects. Appl. Environ. Microbiol. 57:981∼986.
  2. Ben-Dov, E., A. Zaritsky, E. Dahan, Z. Barak, R. Sinai, R. Manasherob, A. Khamraev, E. Troitskaya, A. Dubitsky, N. Berezina, and Y. Margalith (1997) Extended screening by PCR for seven cry–group genes from field-collected strains of Bacillus thuringiensis. Appl. Environ. Microbiol. 63:4883 ∼4890.
  3. Brian, A., and C. Federici (1998) Transgenic Bt crops and resistance:Broadscale use of pest-killing plants to be true test. California Agriculture 52:14∼20.
  4. Burton, S. L., D. J. Ellar, J. Li, and D. J. Derbyshire (1999) N-Acetylgalactosamine on the putative insect receptor aminopeptidase N is recognized by a site on the domain III lectinlike fold of a Bacillus thuringiensis insecticidal toxin. J. Mol. Biol. 287:1011∼1022. https://doi.org/10.1006/jmbi.1999.2649
  5. Carozzi, N. B., V. C. Kramer, G. W. Warren, S. Evola, and M.G. Koziel (1991) Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl. Environ. Microbiol. 57:3057∼3061.
  6. Choi, S. Y., M. S. Cho, T. H. Kim, and Y. M. Yu (2008) Bioactive characterization of Bacillus thuringiensis subsp. kurstaki CAB133 isolated from domestic soil. Kor. J. Appl. Entomol. 47:175∼813. https://doi.org/10.5656/KSAE.2008.47.2.175
  7. Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. van Rie, D. Lereclus, J. Baum and D. H. Dean (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. 62:807∼813.
  8. Edyta, K., K. Adam Z. Jadwiga Z. Kazimierz and H. Paetzl (2007) Analysis of cry gene profiles in Bacillus thuringiensis strains isolated during epizootics in Cydia pomonella L. Curr. Microbiol. 55:217∼222. https://doi.org/10.1007/s00284-007-0085-2
  9. Ferre, J., M. D. Real, J. van Rie, S. Jansens and M. Perferoen (1991) Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. U.S.A 88:5119∼5123. https://doi.org/10.1073/pnas.88.12.5119
  10. Glare, T. R. and M. O'Callaghan (2000) Bacillus thuringiensis: Biology, ecology and safety. Chichester: Wiley pp. 350
  11. Gonzalez, J. M. and B. C. Carlton (1980) Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid 3:92∼98. https://doi.org/10.1016/S0147-619X(80)90038-4
  12. Hofte, H. and H. R. Whiteley (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Mol. Biol. 53:242∼255.
  13. http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/
  14. Hurley J. M., L. A. Bulla, and R. E. Andrews (1987) Purification of the mosquitocidal and cytolytic proteins of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 53:1316∼1321.
  15. Jalali, S. K., K. S. Mohan, S. P. Singh, T. M. Manjunath and Y. Lalitha (2004) Baseline-susceptibility of the old-world bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) populations from India to Bacillus thuringiensis Cry1Ac insecticidal protein. Crop Protect. 23:53∼59. https://doi.org/10.1016/S0261-2194(03)00170-4
  16. Jensen, S., L. Cavarec, M. P. Gassama, and T. Heidmann (1995) Defective I elements introduced into Drosophila as transgenes can regulate reactivity and prevent I-R hybrid dysgenesis. Europ. Dros. Res. Conf. 14:198.
  17. Karamanlidou, G., A. Lambropoulos, S. Koliais, T. Manousis, D. Ellar and C. Kastritsis (1991) Toxicity of Bacillus thuringiensis to laboratory populations of the olive fruit fly (Dacus oleae). Appl. Envir. Microbiol. 57:2277∼2282.
  18. Khan, S. A. (1997) Rolling-circle replication of bacterial plasmids, Microbiol. Mol. Biol. Rev. 61:442∼455.
  19. Kim, T. H., D. A. Kim, K. S. Kim, M. J. Seo, Y. N. Youn, and Y. M. Yu (2009) Characterization of Bacillus thuringiensis subsp. aizawai CAB109 isolate with bioactivities to Spodoptera litura and Spodoptera exigua (Lepidoptera: Noctuidae). Korean J. Appl. Entomol. 48(4):509∼517. https://doi.org/10.5656/KSAE.2009.48.4.509
  20. Kim, D. A., J. S. Kim, M. R. Kil, Y. N. Youn, D. S. Park, and Y. M. Yu (2006) Isolation and activity of insect pathogenic Bacillus thuringiensis strain from soil. Korean J. Appl. Entomol. 45(3):1-6
  21. Kim, H. S., D. W. Lee, S. D. Woo, Y. M. Yu, and S. K. Kang (1998) Biological, immunological, and genetic analysis of Bacillus thuringiensis isolated form granny in Korea. Curr. Microbiol. 37:52∼57. https://doi.org/10.1007/s002849900336
  22. Kim, D. A., J. S. Kim, M. R. Kil, S. K. Paek, S. Y. Choi, D. Y. Jin, Y. N. Youn, I. C. Hwang, and Y. M. Yu (2008) Characterization of new Bacillus thuringiensis isolated with bioactivities to tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae), Korean J. Appl. Entomol. 47:87∼93. https://doi.org/10.5656/KSAE.2008.47.1.087
  23. Krieg, A., A. Huger, G. Langenbruch and W. Schnetter (1983) Bacillus thuringiensis var. tenebrionis; A new pathotype effective against larvae of Colepoptera. J. Appl. Entomol. 96:500∼508.
  24. Kumar N. S., and G. Venkateswerlu (1998) Endogenous proteaseactivated 66-kDa toxin from Bacillus thuringiensis subsp. kurstaki active against Spodoptera littoralis. FEMS Microbiol Lett. 159:113∼120. https://doi.org/10.1111/j.1574-6968.1998.tb12849.x
  25. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680∼685. https://doi.org/10.1038/227680a0
  26. Lereclus, D., M. M. Lecadet, J. Ribier, and R. Dedonder (1982) Molecular relationships among plasmids of Bacillus thuringiensis: Conserved sequences through 11 crystalliferous strains, Mol. Gen. Genet. 186:391∼398. https://doi.org/10.1007/BF00729459
  27. Luo, K., D. Banks, and M. J. Adang (1999) Toxicity, binding, and permeability analyses of four Bacillus thuringiensis Cry1 delta -endotoxins using brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda. Appl. Environ. Microbiol. 65:457∼464.
  28. Martin, P. A. W. and R. S. Travers (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55:2437∼2442.
  29. McDowell, D. G. and N. H. Mann (1991) Characterization and sequence analysis of a small plasmid from Bacillus thuringiensis var. kurstaki HD1-DIPEL, Plasmid 25:113∼120. https://doi.org/10.1016/0147-619X(91)90022-O
  30. Minamikawa, H. (1937) Survey on the tobacco cutworm, Spodoptera litura Fabricius Taiwan Central Res. Ins. Agr. Report 70:1∼66.
  31. Mochida, O. and T. Okada (1974) A bibliography of Spodoptera spp. (Lepidoptera: Noctuidae). Misc. Bull. Kyushu Nat. Agr. Expt. Sta. 49:1∼110.
  32. Neema, A., M. Pawan and Raj K. Bhatnagar (2002) Interaction of gene - cloned and insect cell- expressed aminopeptidase N of Spodoptera litura with insecticidal crystal protein Cry1C. Appl. Environ. Microbiol. 68:4583∼4592. https://doi.org/10.1128/AEM.68.9.4583-4592.2002
  33. Ohba, M. and K. Aizawa (1978) Physiology of spore forming bacteria associated with insects minimal nutritional requirements for growth sporulation and parasporal crystal formation in Bacillus thuringiensis. Appl. Environ. Microbiol. 28:124-128.
  34. Ohgushi, A., H. Satioh, W. Naoya., A. Uemori. and M. Ohba (2005) Cloning and characterization of two novel genes, cry24B and s1orf2, from a mosquitocidal strain of Bacillus thuringiensis serovar sotto. Curr. Microbiol. 51:131∼136. https://doi.org/10.1007/s00284-005-7529-3
  35. Pedro, D., L. Loeza, B. Graciela, C. Jorge, O. Z. Alejandra, M. Victor, A. Baizabal, J. Juan, A. Valdez and J. E. Lopez-Mezaa (2005) The plasmid pBMBt1 from Bacillus thuringiensis subsp. darmstadiensis (INTA Mo14-4) replicates by the rolling-circle mechanism and encodes a novel insecticidal crystal protein-like gene. Plasmid. 25:229∼240.
  36. Peyronmet, O., V. Vachon, J. L. Schwartz, and R. Laprade (2001) Ion channels induced in planar lipid bilayers by the Bacillus thuringiensis toxin Cry1Aa in the presence of gypsy moth (Lymantria dispar) brush border membrane, J. Membr. Biol. 184:45∼54. https://doi.org/10.1007/s00232-001-0071-8
  37. Porcar, M., J. Iriarte, V. Cosmao Dumanoir, M. D. Ferrandis, M. -M. Lecadet, J. Ferré, and P. Caballero (1999) Identification and characterization of the new Bacillus thuringiensis serovars pirenaica (serotype H57) and iberica (serotype H59). J. Appl. Micro. 87:640∼648. https://doi.org/10.1046/j.1365-2672.1999.00863.x
  38. Rajagopal, R., S. Sivakumar, A. Neema, M. Pawan, l. Raj, and K. Bhatnagar (2002) Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor, J. Biol. Chem. 277:46849∼46851. https://doi.org/10.1074/jbc.C200523200
  39. Raymond, M. (1985) Presentation d'un programme d'analyse log-probit pour micro-ordinnateur. Cah. ORSTOM, Ser. Ent. Med. et Parasitol. 22:117∼121.
  40. Sanchis, V., D. Lereclus, G. Menou, J. Chaufaux, S. Guo, and M. M. Lecadet (1989) Nucleotide sequence and analysis of the N-terminal coding region of the Spodoptera-active $\delta$ -endotoxin gene of Bacillus thuringiensis aizawai. Mol. Microbiol. 3:229∼238. https://doi.org/10.1111/j.1365-2958.1989.tb01812.x
  41. Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. R. Baum and J. Feitelson (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. 62.
  42. Schnepf, H. E. (1995) Bacillus thuringiensis toxins; regulation, activities and structural diversity. Curr. Opin. Biotech. 6:305 ∼312. https://doi.org/10.1016/0958-1669(95)80052-2
  43. Smith, R. A. and G. A. Couche (1991) The phylloplane as a source of Bacillus thuringiensis. Appl. Environ. Microbiol. 57:311∼315.
  44. Tabshnik, B. E. (1994) Evolution of resistance to Bacillus thuringiensis. Ann. Rev. Entomol. 39:47∼79. https://doi.org/10.1146/annurev.en.39.010194.000403
  45. Vadlamudi, R. K., E. Weber, I. Ji, T. H. Ji and L. A. Bulla Jr (1995) Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis, J. Biol. Chem. 270:5490∼5494. https://doi.org/10.1074/jbc.270.10.5490
  46. Visser, B., E. Munsterman, A. Stocker and W. G. Dirkse (1990) A novel Bacillus thuringiensis gene encoding a Spodoptera exigua- specific crystal protein. J. Bacteriol. 172:6783∼6788. https://doi.org/10.1128/jb.172.12.6783-6788.1990
  47. Visser, B, T. van der Salm, W. van den Brink and G. Folkers (1988) Genes from Bacillus thuringiensis entomocidus coding for insect-specific toxins. Mol. Gen. Genet. 212:219∼224. https://doi.org/10.1007/BF00334688
  48. Zeigler, D. R. (1999) Bacillus genetic stock center catalog of strains. Part 2:Bacillus thuringiensis and Bacillus cereus, 7th ed. Bacillus Genetic Stock Center, Columbus, Ohio.
  49. Zhong, C., D. J. Ellar, A. Bishop, C. Johnson, S. Lin and E. R. Hart (2000) Characterization of a Bacillus thuringiensis $\delta$-endotoxin which is toxic to insects in three orders. J. Invertebr. Pathol. 76:131∼139. https://doi.org/10.1006/jipa.2000.4962
  50. Zouari, N. and J. Samir (1997) Purification and immunological characterization of particular delta-endotoxins from three strains of Bacillus thuringiensis. Biotechol. Lett. 19(8):825 ∼829. https://doi.org/10.1023/A:1018364915612