Occurrence of the Pb-Zn Skarn Deposits in Gukjeon Mine, Korea

국전 Pb-Zn 스카른 광상의 산출상태

  • Yang, Chang-Moon (Department of Earth and Environmental Sciences and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Choi, Jin-Beom (Department of Earth and Environmental Sciences and Research Institute of Natural Sciences, Gyeongsang National University)
  • 양창문 (경상대학교 지구환경과학과, 경상대학교 기초과학연구소) ;
  • 최진범 (경상대학교 지구환경과학과, 경상대학교 기초과학연구소)
  • Received : 2010.12.02
  • Accepted : 2010.12.23
  • Published : 2010.12.30

Abstract

The Gukjeon Pb-Zn mine was recognized as skarn deposits which replaced the limestone layer of the Jeongkansan Formation by intrusion of biotite granite in late Cretaceous. The Jeongkansan Formation is mainly composed of tuffaceous shale, and interlayers of sandstone, andesitic tuff, limestone, and conglomerate. The limestone layer is located in the lower part of the Jeongkansan Formation with 6~8 m in thickness and about 500 m in length. The Gukjeon deposits are divided into the Jukgang ore bodies once mined underground and the eastern ore bodies. Main ores are sphalerite and galena, in association with small amounts of chalcopyrite, arsenopyrite, pyrite, and pyrrhotite, etc. Skarns mainly consist of clinopyroxenes and Ca-garnets, associated with actinolite, chlorite, axinite, and calcite, etc. The Jukgang ore bodies show symmetrical distribution of zoning outward, representing clinopyroxene (hedenbergite) zone, clinopyroxene-garnet (grossular) zone, garnet (andradite) zone, and alteration zone of hornfels. $Fe^{2+}$ contents in clinopyroxenes increase with decreasing sphalerite grade. Sphalerite ores are found in all zones and $Fe^{2+}$ contents in sphalerite increase in the same way as those in clinopyroxenes, implying that clinopyroxene and sphalerite are closely related each other. It is concluded that the Gukjeon ores occurred in the ore rich zone of high grade sphalerite with less pyrite in assoication with clinopyroxene.

국전 연-아연 광상은 백악기 말 유천층군의 정각산층 내에 협재된 석회암이 불국사 관입암류인 흑운모화강암에 의해 교대작용을 받아 형성된 스카른 광상이다. 정각산층은 주로 응회질 세일로 구성되며 사암, 안산암질 응회암, 석회질암, 역암이 협재된다. 암색에 따라 하부, 중부, 상부로 나뉘며 석회질암은 하부에서 6~8 m의 층후를 가지고 약 500 m 정도 연장을 보인다. 국전광상은 과거 갱내 채굴이 이루어진 죽갱 광체와 광산의 동쪽에 위치한 동부 광체로 구분된다. 주요 광석광물은 섬아연석과 방연석여며 황동석, 유비철석, 황철석, 자류철석 등이 수반되며, 스카른 광물로는 단사휘석과 석류석이 주로 산출되며 양기석, 녹니석, 엑시나이트, 방해석, 석영 등이 수반된다. 죽갱 광체의 경우 부광대를 이루는 중심부로부터 바깥쪽으로 대칭적으로 대상 분포하는 특정을 보여주는데, 중심부로부터 단사휘석(헤덴버지이트)대, 단사휘석-석류석(그로슐라)대, 석류석(안드라다이트)대, 호온펠스 변질대 순으로 분포한다. 단사휘석은 부광대에서 멀어질수록 $Fe^{2+}$의 함량이 증가한다. 섬아연석은 부광대인 중심부를 포함하여 모든 대에서 산출되며 단사휘석과 마찬가지로 부광대에서 벌어질수록 섬아연석의 $Fe^{2+}$ 함량이 증가한다. 이는 국전광상의 배태에는 단사휘석과 섬아연석의 공생이 밀접히 관련되어 있음을 지시한다. 따라서, 국전광상의 산출상태는 황철석의 함량이 비교적 적으며 품위가 높은 섬아연석이 단사휘석과 수반되어 부광대를 이루는 것으로 사료된다.

Keywords

References

  1. 김규봉, 황상구 (1988) 밀양도폭 지질보고서 1:5만, 한국동력 자원연구소.
  2. 지오콘엔지니어링 (2008) 국전광산 광상조사 보고서.
  3. 최선규 (1993) 한국 중부지역 금은광상산 섬아연석의 조 성변화와 성인적 특성. 대한광산지질학회지, 26, 135- 144.
  4. 홍승호, 최범영 (1988) 유천도폭 지질보고서 1:5만. 한국동력 자원연구소.
  5. Barton, P.B., Jr. and Skinner, B.J. (1979) Sulfide mineral stabilities. In: H.L. Barnes (ed.), Geochemistry of Hydrothemal Ore Deposits, Wiley-Interscience, New York, 278-403.
  6. Chang, S.W. (1988) Mineralogy of Tungsten Ores From Sangdong Mine. Unpub. Ph. D. Thesis, Seoul National University.
  7. Choi, J.B. (1981) Mineralogy and Genesis of Tungsten Ores and Skarns in the Sangdong Mine, M.S. Thesis, Seoul National University.
  8. Choi, J.B. (1989) Mineralogy of Skarns and Associated Minerals in the Geodo Mine, Korea. Unpub. Ph. D. Thesis, Seoul National University.
  9. Chon, H.T., Shimazaki, H., and Sato, K. (1981) Compositional variation of sphalerites from some hydrothemal metallic ore deposits in the Republic of Korea. Japan Mining Geol., 31, 337-343.
  10. Chough, S.K. and Sohn, Y.K. (2010) Tectonic and sedimentary evolution of a Cretaceous continental arcbackarc system in the Korean peninsula: New view. Earth-Science Reviews, 101, 225-249. https://doi.org/10.1016/j.earscirev.2010.05.004
  11. Hey, M.H. (1954) A new review of the chlorites. Mineralogical Magazine, 3, 87-102.
  12. Jeong, J.I. (1986) Ore Mineralogy and Petrology of Zinc- Lead-Silver ores from the Yeonhwa I Mine, Republic of Korea. Unpub. Ph. D. Thesis, Waseda University, Japan.
  13. Kim, K.H., Nakai, N., and Kim, O.J. (1981) A mineralogical study of the skarn minerals from the Shinyemi lead-zinc ore deposits. Korea. Jour. Kor. Inst. Mining Geol., 14, 167-182.
  14. Kim, S.Y. (1976) Geology, Mineralogy, and Geochemistry of Tungsten Deposits of the Sangdong-Ogbang Area, Southern Korea. Unpub. Ph. D. Thesis, University of Leed, England.
  15. Ko, J.D. (1981) Mineralogy and Genesis of Fe-Cu and Au-Bi-Cu Deposits in the Geodo Mine, Gangwon-Do, Korea. Unpub. M. S. Thesis, Seoul National University.
  16. Leake, B.E. Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., and Youzhi, G. (1997) Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Assosiation, Commission on New Minerals and Mineral Names. American Mineralogist, 35, 219-246.
  17. Lee, J.I. (1991) Petrology, mineralogy and isotopic study of the shallow depth emplaced granitic rock, southern part of the kyoungsang Basin, Korea-Origin of micrographic granite. DSc thesis, University of Tokyo, p. 197.
  18. Marico, T. and Yang, D.Y. (1988) Occurrence and zonal arrangement of minerals in the Shinyemi iron skarn deposit, Korea. Mining Geology, 38, 72.
  19. Min, K.D., Kim, O.J., Lee, D.D., and Choo, S.H. (1982) Applicability of plate tectonics to the post Late Cretaceous igneous activities and mineralization in southern part of South Korea(I). Jour. Kor. Inst. Min. Geol., 15, 123-154.
  20. Mizuta, T., Shimazaki, H., and Lee, M.S. (1984) Compositional variation of sphalerites from some Au-Ag ore deposits in south Korea. In Granite Provinces and Asociated OreDeposits in South Korea (A. Tsusue, ed.), 127-152.
  21. Moon, K.J. (1983) The Genesis of the Sangdong Tungsten Deposit, the Republic of Korea. Unpub. Ph. D. Thesis, Tasmania University, Australia.
  22. Scott, S.D. and Barnes, H.L. (1971) Sphalerite geothermometry and geobarometry. Econ. Geol., 66, 653-669. https://doi.org/10.2113/gsecongeo.66.4.653
  23. Shimazaki, H. and Shimizu, M. (1980) Contents of FeS, MnS, and CdS in sphalerite from skarn-type ore deposits in Japan. In: Yamaoka, K. (ed.), Abstracts for 2nd symposium on genesis of metallic mineral deposits of granitic affinity, 10-15 (in Japanese).
  24. So, C.S. (1968) Die Scheelite-Largerstatte, Sangdong. Unpub. Inaug. Diss., Univ. Munich, West Germany.
  25. So, C.S. (1977) Spurenelement-Paragenese in Zinkblenden verschiedener Pb-Zn-Vorkommen in Korea. Mineralogical Journal, 8, 439-455. https://doi.org/10.2465/minerj.8.439
  26. Yun, S.K. (1972) Geology and Skarn Ore mineralization of the Yeonhwa-Ulchin Zinc-Lead Mining District, Southeastern Taebaegsan Region, Korea. Unpub. Ph. D. Thesis, Stanford University, California.