DOI QR코드

DOI QR Code

Characterization and Pore Structure of Ordered Mesoporous SBA-15 Silica by Aging Condition

숙성조건 의한 메조포러스 SBA-15 실리카의 기공구조와 특성

  • Kim, Han-Ho (Department of Advanced Materials Engineering, Kangwon National University) ;
  • Park, Hyun (Department of Advanced Materials Engineering, Kangwon National University) ;
  • Kim, Kyung-Nam (Department of Advanced Materials Engineering, Kangwon National University)
  • 김한호 (강원대학교 신소재공학과) ;
  • 박현 (강원대학교 신소재공학과) ;
  • 김경남 (강원대학교 신소재공학과)
  • Received : 2010.02.23
  • Accepted : 2010.05.13
  • Published : 2010.05.25

Abstract

The study was done to change the morphology and pore size of SBA-15 silica, and the characteristics of SBA-15 silica were investigated with TG-DSC, XRD, SEM, TEM and N2 adsorption-desorption under changing aging conditions. SBA-15 silica having a 2D-hexagonal structure was synthesized and confirmed by SEM and TEM. The structure of mesoporus silica SBA-15 showed a pore having regularly formed hexagonal structure and a passage having a cylindrical shape. This result is in good agreement with the pore forming in XRD and cylindrical shape of the structure in $N_2$ adsorption-desorption isotherm. SBA-15 silica showed a large BET surface area of $603-698\;m^2/g$, a pore volume of $0.673-0.926\;cm^3/g$, a large pore diameter of 5.62-7.42 nm, and a thick pore wall of 3.31-4.37 nm. This result shows that as the aging temperature increases, the BET surface area, pore volume, and pore diameter increase but the pore wall thickness decreases. The BET surface areas in SM-2 and SM-3 are as large as $698\;m^2/g$. However, SM-2 has a large surface area and forms a thick pore wall, when the aging temperature is $100^{\circ}C$ and is synthesized into stable mesoporous SBA-15 silica.

Keywords

References

  1. A. Corma, Chem. Rev., 97(6), 2373 (1997). https://doi.org/10.1021/cr960406n
  2. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 359, 710 (1992). https://doi.org/10.1038/359710a0
  3. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, J. Am. Chem. Soc., 114, 10834 (1992). https://doi.org/10.1021/ja00053a020
  4. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky, J. Am. Chem. Soc., 120, 6024(1998). https://doi.org/10.1021/ja974025i
  5. A. Firouzi, D. Kumar, LM. Bull, T. Besier, P. Sieger, Q. Huo, S. A. Walker, J A. Zasadzinski, C. Glinka, J. Nicol, Science, 267, 1138 (1995). https://doi.org/10.1126/science.7855591
  6. F. Zhang, Y. Yan, H. Yang, Y. Meng, C. Yu, B. Tu and D. Zhao, J. Phy. Chem., B, 109, 8723 (2005). https://doi.org/10.1021/jp044632+
  7. Z. Jin, X. Wang and X. Cui, Colloid. Surface. A: Physicochem. Eng. Aspect., 316, 27 (2008). https://doi.org/10.1016/j.colsurfa.2007.08.013
  8. S. A. Bagshaw and I. J. Bruce, Micro & Meso. Mat., 109, 199 (2007).
  9. Q. Huo, D. I. Margolese and G. D. Stucky, Chem. Mater., 8, 1147 (1996). https://doi.org/10.1021/cm960137h
  10. K. Northcott, H. Kokusen, Y. Komatsu and G. Stevens, Separa. Sci. & Tech., 41, 1829 (2006). https://doi.org/10.1080/01496390600725760
  11. V. Escax, E. Delahaye, M. I. Clerc, P. Beaunier, M. D. Appay and Davidson., Micro. & Meso. Mat., 102, 234 (2007). https://doi.org/10.1016/j.micromeso.2006.12.049
  12. Q. Wei, L. Liu, Z. R. Nie, H. Q. Chen, Y. L. Wang, Q. Y. Li and J. X. Zou, Micro & Meso. Mat., 101, 381 (2007). https://doi.org/10.1016/j.micromeso.2006.09.014

Cited by

  1. Magnetite Nanoparticles Dispersed in Hybrid Aerogel for Hyperthermia Application vol.22, pp.7, 2012, https://doi.org/10.3740/MRSK.2012.22.7.362