DOI QR코드

DOI QR Code

An Experimental Study for the Empirical Equation to Quantify the Subsidence of Riprap Scour Protection at Downstream of Vertical Drop Structures

연직낙차공 하류부 사석보호공 침하량 산정식에 관한 실험 연구

  • Kim, Chang-Sung (River, Coastal and Harbor Research Division, Korea Institute of Construction Technology) ;
  • Kang, Joon-Gu (River, Coastal and Harbor Research Division, KICT) ;
  • Yeo, Hong-Koo (River, Coastal and Harbor Research Division, KICT) ;
  • Yeo, Woon-Kwang (Dept. of Civil and Environmental Eng., Myongji Univ.)
  • 김창성 (한국건설기술연구원 하천해안항만연구실) ;
  • 강준구 (한국건설기술연구원 하천해안항만연구실) ;
  • 여홍구 (한국건설기술연구원 하천해안항만연구실) ;
  • 여운광 (명지대학교 토목환경공학과)
  • Received : 2010.01.13
  • Accepted : 2010.03.30
  • Published : 2010.05.31

Abstract

Drop structures that span the entire width of channels are installed to alleviate channel grades and have been constructed widely in Korean rivers. Aprons are normally installed and integrated with drop structures and bed protections are added on the downstream part of aprons to protect both drop structures and aprons. Scour occurring on aprons is reported to provide various habitats such as ripples and pools in natural rivers. This study focuses on the scour characteristics on an apron integrated with a drop structure and the subsidence of a riprap protection. The scour depth on the downstream part of the drop structure is found to increase with the increase of unit discharge; however, to decrease as the tail water depth gets deeper. Based on the experimental measurements, the subsidence of the riprap scour protection is calculated with respect to the thickness of riprap. Finally, the dimensionless empirical equation to quantify the subsidence of the riprap scour protection without filters at downstream of the vertical drop is suggested.

낙차공은 하천의 경사를 완화시키기 위해 설치하는 대표적 횡단구조물로써 국내 하천에서 쉽게 볼 수 있다. 낙차공물받이부(apron)는 낙차공 본체와 일체화된 구조물로 설치하는 것이 일반적이며 물받이부의 하류부에 바닥보호공을 설치하여 낙차공과 물받이를 보호하도록 설계된다. 이에 본 연구에서는 낙차공 물받이부에서의 세굴현상과 사석보호공을 설치함으로써 발생하는 침하량에 대한 실험을 수행하였다. 세굴은 낙차공에 유입되는 유량이 증가함에 따라 세굴심은 증가하지만 낙차공 하류부의 수심이 증가할수록 세굴심은 감소하는 것으로 나타났다. 또한 낙차공 물받이부 사석보호공을 포설두께에 따른침하량을 산정하여 세굴심을 제어하고 구조물의 안전을 확보할 수 있는 가능성을 확인하였으며 최종적으로 필터가 없는 사석보호공의 무차원 침하량 산정식을 제안하였다.

Keywords

References

  1. 김혜주, 김창완, 우효섭(2003). 하천횡단구조물이 하천의 생태적 발전에 미치는 영향과 대안. 대한토목학회지, 대한토목학회, 제51권, 제3호, pp. 42-58 .
  2. 지운, 여운광, 이원민(2008). 필터 없는 사석보호공의 유사이탈로 인한 침하 안정성 평가를 위한 실험 연구. 한국수자원학회논문집, 한국수자원학회, 제41권, 4호, pp. 445-454. https://doi.org/10.3741/JKWRA.2008.41.4.445
  3. 지운, 여운광, 이원민, 강준구(2009). 교각에 설치된 사석 보호공의 침하량 산정식 도출에 관한 실험 연구. 대한토목학회논문집, 대한토목학회, Vol. 29, No. 1B.
  4. 한국수자원학회(2009). 하천설계기준.설계, 한국수자원학회.
  5. Abt, S.R., and Johnson, T.L. (1991). Riprap Design for Overtopping Flow. ASCE, Journal of Hydraulic Engineering, Vol. 117, No. 8, pp. 959-972. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:8(959)
  6. Bormann, N.E., and Julien, P.Y. (1991). Scour Downstream of Grade-Control Structures. ASCE, Journal of Hydraulic Engineering, Vol. 117, No. 5, pp. 579-594. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:5(579)
  7. Construction Industry Research and Information Association (2002). Manual on scour at bridges and other hydraulic structures. Construction Industry Research and Information Association, Westminster, London, U.K.
  8. Escarameia, M., and May, R.W.P. (1992). Channel Protection: Turbulence Downstream of Structures. Report SR 313, HR Wallingford.
  9. Fahlbusch, F.E. (1994). Scour in Rock River Beds Downstream of Large Dams, International Journal on Hydropower & Dams Vol. 1, No. 4, pp. 30-32.
  10. Federal Highway Administration (1989). Design of Riprap Revetments. Publication No. FHWA IP89- 016, Hydraulic Engineering Circular No. 11, Federal Highway Administration.
  11. Federal Highway Administration (2001). Bridge Scour and Stream Instability Countermeasures. Publication No. FHWA NHI01-003, Hydraulic Engineering Circular No. 23, Second Edition, Federal Highway Administration.
  12. Federal Highway Administration (2006). Hydraulic Design of Energy Dissipators for Culverts and Channels. Publication No. FHWA-NHI-06-086, Hydraulic Engineering Circular No. 14, Third Edition, Federal Highway Administration.
  13. Hoffmans, G.J.C.M. (1998). Jet Scour in Equilibrium Phase. ASCE, Journal of Hydraulic Engineering, Vol. 124, No. 4, pp. 430-437. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:4(430)
  14. Maynord, S.T. (1995). Corps Riprap Design Guidance for Channel protection. paper presented at the International Riprap Workshop, Fort Collins.
  15. Pilarczyk, K.W. (1990). Stability Criteria for Revetments. Proceedings of the 1990 National Conference on Hydraulic Engineering, ASCE.
  16. Schokiltsh, A. (1932). Kolkbildung unter Uberfallstrahlen, Die Wasswirtschaft, 24, pp. 341-343 (in German)
  17. Urban Drainage and Flood Control District, (1982). Design Criteria for Riprap Drop Structures. Denver, Colorado.
  18. Urban Drainage and Flood Control District, (2008). Drainage Criteria Manual, Vol. 2, Denver, Colorado.
  19. U. S. Army Corps of Engineers (1989). Report on Standardization of Riprap Gradations, U.S. Army Corp of Engineers Lower Mississippi Valley Division.
  20. Veronese, A. (1937). Erosionidi Fondo a Valle di uno Scarico, Annali dei Lavori Pubblici, 75, pp. 717-726 (in Italian)
  21. (U. S. Department of the Interior Bureau of Reclamation (1984) Computing Degradation and Local Scour-Technical Guideline for Bureau of Reclamation, U. S. Department of the Interior Bureau of Reclamation, 재인용)
  22. Worman, A. (1989). Riprap protection without filter layers. Journal of Hydraulic Engineering, ASCE, Vol. 115, No. 12, pp. 1615-1630. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:12(1615)
  23. Zimmerman, F., and Maniak, U. (1967). Scour Studies. Journal of Hydraulics Division, ASCE.
  24. (U. S. Department of the Interior Bureau of Reclamation (1984) Computing Degradation and Local Scour-Technical Guideline for Bureau of Reclamation, U. S. Department of the Interior Bureau of Reclamation, 재인용)

Cited by

  1. Effective Analysis by Arrangement of Multi-Baffle at Weir Downstream vol.08, pp.12, 2016, https://doi.org/10.4236/eng.2016.812079
  2. An Analysis of Scour Effect on Hydraulic Energy Dissipater Installation at Weir Downstream vol.17, pp.12, 2016, https://doi.org/10.5762/KAIS.2016.17.12.453
  3. Experimental Study on Local Scour in the Downstream Area of Low Drop Structure Types vol.04, pp.08, 2012, https://doi.org/10.4236/eng.2012.48060
  4. Numerical Modeling on the Change in Discharge Performance of the Sluice for Tidal Power Plant According to the Apron Shape vol.25, pp.2, 2013, https://doi.org/10.9765/KSCOE.2013.25.2.94