Bioethanol Production Based on Lignocellulosic Biomass with Pichia stipitis

Pichia stipitis를 이용한 리그노셀룰로스계 바이오매스 기반의 바이오에탄올 생산

  • Bae, Yang-Won (Department of Chemical Engineering, Kwangwoon University) ;
  • Seong, Pil-Je (Department of Chemical Engineering, Kwangwoon University) ;
  • Cho, Dae-Haeng (Department of Chemical Engineering, Kwangwoon University) ;
  • Shin, Soo-Jeong (Department of Wood and Paper Science, Chungbuk National University) ;
  • Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University) ;
  • Han, Sung-Ok (School of Life Science and Biotechnology, Korea University) ;
  • Kim, Yong-Hwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Park, Chul-Hwan (Department of Chemical Engineering, Kwangwoon University)
  • Received : 2010.11.10
  • Accepted : 2010.12.25
  • Published : 2010.12.31

Abstract

We investigated the effect of inhibitory compounds derived lignocellulosic hydrolysates on cell growth, sugar consumption and ethanol productivity, and also we intended to identify the potential for ethanol production based on lignocellulosic hydrolysates. Cell growth and ethanol production in the presence of acetate were initiated after 12 hr. Furans showed a longer lag time and phenolics showed a significant effect on strain and ethanol production in comparison to other model compounds. In the case of lignocellulosic hydrolysates, the acetate strongly affected cell growth and ethanol production.

Keywords

References

  1. Luo, L., E. Voet, and G. Huppes (2009) Life cycle assessment and life cycle costing of bioethanol from sugarcane in brazil. Renew. Sust. Energ. Rev. 13: 1613-1619. https://doi.org/10.1016/j.rser.2008.09.024
  2. Sun, Y. and J. Cheng (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol. 83: 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
  3. Saha, B. C. (2003) Hemicellulose bioconversion. J. Ind. Microbiol. Biot. 30: 279-291. https://doi.org/10.1007/s10295-003-0049-x
  4. Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, and M. Ladisch (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol. 96: 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  5. Liu, Z. L., P. J. Slininger, and S. W. Gorisich (2005) Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl. Biochem. Biotech. 121-124: 451-460.
  6. Balat, M. (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conv. Manag. 52: 858-875. https://doi.org/10.1016/j.enconman.2010.08.013
  7. Modig, T., J. R. M. Almeida, M. F. Gorwa-Grauslund, and G. Liden (2008) Variability of the response of saccharomyces cerevisiae strains to lignocellulose hydrolysate. Biotechnol. Bioeng. 100: 423-429. https://doi.org/10.1002/bit.21789
  8. Sakai, S., Y. Tsuchida, S. Okino, O. Ichihashi, H. Kawaguchi, T. Watanabe, M. Inui, and H. Yukawa (2007) Effect of lignocellulose-deribed inhibitors on growth of ethanol production by growth-arrested Corynebacterium glutamicum $R^{\nabla}$. Appl. Environ. Microb. 73: 2349-2353. https://doi.org/10.1128/AEM.02880-06
  9. Keating, J. D., C. Panganiban, and S. D. Mansfield (2006) Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. Bioeng. 93: 1196-1206. https://doi.org/10.1002/bit.20838
  10. Faracoa, V. and Y. Hadarc (2011) The potential of lignocellulosic ethanol production in the Mediterranean Basin. renew. sust. energ. rev. 15: 252-266. https://doi.org/10.1016/j.rser.2010.09.050
  11. Almeida, J. R. M., T. Modig, A. Röder, G. Liden, and M. F. Gorwa-Grauslund (2008) Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF). Biotechnol. Biofuels 1: 12. https://doi.org/10.1186/1754-6834-1-12
  12. Tolan, J. S. and R. K. Finn (1987) Fermentation of D-xylose and L-arabinose to ethanol by Erwinia chrysanthemi. Appl. Environ. Microb. 53: 2033-2038.
  13. Nigam, J. N., R. S. Ireland, A. Margaritis, and M. A. Lachance (1985) Isolation and screening of yeasts that ferment D-xylose directly to ethanol. Appl. Environ. Microb. 50: 1486-1489.
  14. Modig, T., G. Lidén, and J. Taherzadeh (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem. J. 363: 769-776. https://doi.org/10.1042/0264-6021:3630769
  15. Boopathy, R., H. Bokang, and L. Daniels (1993) Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J. Ind. Microbiol. Biot. 11: 147-150. https://doi.org/10.1007/BF01583715
  16. Klinke, H. B., A. B. Thomsen, and B. K. Ahring (2004) Inhibition of ethanol producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biot. 66: 10-26. https://doi.org/10.1007/s00253-004-1642-2
  17. Cho, D. H., S. -J. Shin, Y. Bae, C. Park, and Y. H. Kim (2010) Enhanced ethanol production from deacetylated yellow poplar acid hydrolysate by Pichia stipitis. Bioresource Technol. 101: 4947-4951. https://doi.org/10.1016/j.biortech.2009.11.014
  18. Heipieper, H. J., F. J. Weber, J. Sikkema, H. Keweloh, and J. A. M. De Bont (1994) Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 12: 409-415. https://doi.org/10.1016/0167-7799(94)90029-9
  19. Russell, J. B. (1992) Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J. Appl. Microbiol. 73: 363-370. https://doi.org/10.1111/j.1365-2672.1992.tb04990.x
  20. Keating, J. D., C. Panganiban, and S. D. Mansfield (2006) Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. Bioeng. 93: 1196-1206. https://doi.org/10.1002/bit.20838
  21. Ando, S., I. Arai, K. Koichi, and S. Hanai (1986) Identification of aromatic monomers in steam-exploded poplar and their influences on ethanol fermentation by Saccharomyces cerevisiae. J. Ferment. Technol. 64: 567-670. https://doi.org/10.1016/0385-6380(86)90084-1
  22. Clark, T. A. and K. L. Mackie (1984) Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. J. Chem. Technol. Biot. 34B: 101-110.
  23. Delgenes, J. P., R. Moletta, and J. M. Navarro (1996) Effects of lignocellulosic degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis and Candida shehatae. Enzyme. Microb. Tech. 19: 220-225. https://doi.org/10.1016/0141-0229(95)00237-5
  24. De Wulf, O., P. Thonart, P. Gaignage, M. Marlier, A. Paris, and M. Paquot (1986) Bioconversion of vanillin to vanillyl alcohol by Saccharomyces cerevisiae. Biotechnol. Bioeng. Symp. 17: 605-616.
  25. Klinke, H. B., L. Olsson, A. B. Thomsen, and B. K. Ahring (2003) Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast. Biotechnol. Bioeng. 81: 738-747. https://doi.org/10.1002/bit.10523
  26. Agbogbo, F. K., G. Coward-Kelly, M. Torry-Smith, and K. S. Wenger (2006) Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem. 41: 2333-2336. https://doi.org/10.1016/j.procbio.2006.05.004