Design of Torque Servo for Impedance Control of Double Vane Rotary Hydraulic Actuator System

더블 베인 회전형 유압 구동시스템의 임피던스 제어를 위한 토크 서보 설계

  • 김선민 (포항공과대학교 기계공학과) ;
  • 최영진 (한양대학교 전자정보시스템공학과) ;
  • 정완균 (포항공과대학교 기계공학과)
  • Received : 2010.04.05
  • Accepted : 2010.05.24
  • Published : 2010.05.31

Abstract

In order to achieve a force controller with high performance, an accurate torque servo is required. However, the precise torque servo for a double vane rotary actuator system has not been developed till now, due to many nonlinear characteristics and system parameter variations. In this paper, the torque servo structure for the double vane rotary actuator system is proposed based on the torque model. Nonlinear equations are set up using dynamics of the double vane rotary hydraulic actuator system. Then, to derive the torque model, the nonlinear equations are linearized using a taylor series expansion. Both effectiveness and performance of the design of torque servo are verified by torque servo experiments and applying the suggested torque model to an impedance controller.

Keywords

References

  1. J. Heintze, G. van Schothorst, van der A.J.J. Weiden, P.C. Teerhuis, "Modeling and Control of an industrial hydraulic rotary vane actuator", IEEE International Conference on Decision and Control, Vol.2, pp.1913-1918, 1993.
  2. Glen Bilodeau, Evangelos Papadopoulos, "Modeling, Identification and Experimental Validation of a Hydraulic Manipulator Joint for Control", IEEE International Conference on Robots and Systems, pp.331-336, 1997.
  3. Robert Bickel, Masayoshi Tomizuka and Wan-kyun Chung, "Hybrid impedance control in constraint coordinates using a disturbance observer", IEEE International Conference on Decision and Control, Vol.2, pp.1974-1979, 1996.
  4. Guangjun Liu, A. A. Goldenberg, "Robust Hybrid Impedance Control of Robot Manipulators Via a Tracking Control Method", IEEE International Conference on Intelligent Robots and Systems, Vol.3, pp.1594-1601, 1994.
  5. Herbert E. Merritt, Hydraulic Control Systems, WIELY, 1967.
  6. Noah D. Manring, Hydraulic Control Systems, WIELY, 2005.
  7. Dean H. Kim, Tsu-Chin Tsao, "A linearized electrohydraulic servovalve model for valve dynamics sensitivity analysis and control system design", ASME Journal of Dynamic Systems, Measurement, and Control, Vol.122, No.1, pp. 179-187, 2000. https://doi.org/10.1115/1.482440
  8. Dean H. Kim and Tsu-Chin Tsao, "An Improved Linearized Model for Electrohydraulic Servovalves and its Usage for Robust Performance Control System Design", Proceedings of the American Control Conference, pp.3807-3808, 1997.
  9. P. Y. Li, "Dynamic Redesign of a Flow Control Servovalve Using a Pressure Control Pilot", J. Dyn. Syst., Meas. Control, Vol.124, pp.428-434, 2001.
  10. Y. B. He, P. S. K. Chua and G. H. Lim, "Performance Analysis of a Two-Stage Electrohydraulic Servovalve in Centrifugal Force Field", ASME Journal of Fluids Engineering, Vol.125, Issue.1, pp.166-170, 2003. https://doi.org/10.1115/1.1516573
  11. Frank Heidtmann and Markus Brocker, "Nonlinear Modeling and Tracking Control of a Hydraulic Rotary Vane Actuator", PAMM, Vol.5, Issue.1, pp.161-162, WILEY, 2005. https://doi.org/10.1002/pamm.200510060
  12. S. R. Habibi, R. J. Richards and A. A. Goldenberg, "Hydraulic actuator analysis for industrial robot multivariable control", IEEE American Control Conference, Vol.1, pp.1003-1007, 1994.
  13. Mehrzad Namvar, Farhad Aghili, "A combined scheme for identification and robust torque control of hydraulic actuators", ASME Journal of Dynamic Systems, Measurement, and Control, Vol.125, No.4, pp.595-606, 2003. https://doi.org/10.1115/1.1636777
  14. Claude Kaddissi, Jean-Pierre Kenne and Maarouf Saad, "Identification and Real-Time Control of an Electrohydraulic Servo System Based on Nonlinear Backstepping", IEEE/ASME Transactions on Mechatronics, Vol.12, No.1, pp.12-22, 2007. https://doi.org/10.1109/TMECH.2006.886190
  15. Tsuneo Yoshikawa, Foundations of Robotics Anlysis and Control, MIT Press, 1990.