DOI QR코드

DOI QR Code

Acid Treatments of Carbon Nanotubes and Their Application as Pt-Ru/CNT Anode Catalysts for Proton Exchange Membrane Fuel Cell

  • Kim, Min-Sik (Department of Advanced Materials Chemistry, WCU Research Program, Korea University) ;
  • Lim, Sin-Muk (Department of Advanced Materials Chemistry, WCU Research Program, Korea University) ;
  • Song, Min-Young (Department of Advanced Materials Chemistry, WCU Research Program, Korea University) ;
  • Cho, Hyun-Jin (EM-POWER CO. LTD.) ;
  • Choi, Yun-Ho (EM-POWER CO. LTD.) ;
  • Yu, Jong-Sung (Department of Advanced Materials Chemistry, WCU Research Program, Korea University)
  • Received : 2010.08.02
  • Accepted : 2010.09.17
  • Published : 2010.12.30

Abstract

Different oxidation treatments on CNTs using diluted 4.0 M $H_2SO_4$ solution at room temperature and or at $90^{\circ}C$ reflux conditions were investigated to elucidate the physical and chemical changes occurring on the treated CNTs, which might have significant effects on their performance as catalyst supports in PEM fuel cells. Raman spectroscopy, X-ray diffraction and transmission electron microscope analyses were made for the acid treated CNTs to determine the particle size and distribution of the CNT-supported Pt-Ru nanoparticles. These CNT-supported Pt-based nanoparticles were then employed as anode catalysts in PEMFC to investigate their catalytic activity and single-cell performance towards $H_2$ oxidation. Based on PEMFC performance results, refluxed Pt-Ru/CNT catalysts prepared using CNTs treated at $90^{\circ}C$ for 0.5 h as anode have shown better catalytic activity and PEMFC polarization performance than those of the commercially available Pt-Ru/C catalyst from ETEK and other Pt-Ru/CNT catalysts developed using raw CNT, thus demonstrating the importance of acid treatment in improving and optimizing the surface properties of catalyst support.

Keywords

References

  1. Oliveira, N. A.; Franco, E. G.; Arico, E.; Linardi, M.; Gonzalez, E. R. J. Eur. Ceram. Soc. 2003, 23, 2987. https://doi.org/10.1016/S0955-2219(03)00310-8
  2. Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. J. Electrochem. Soc. 1999, 146, 3750. https://doi.org/10.1149/1.1392544
  3. Springer, T. E.; Zawodzinski, T. A.; Gottesfeld, S. J. Electrochem. Soc. 1991, 138, 2334. https://doi.org/10.1149/1.2085971
  4. Cleghorn, S. J. C.; Ren, X.; Springer, T. E.; Wilson, M. S.; Zawodzinski, T. A.; Gottesfeld, S. Int. J. Hydrogen Energy 1997, 22, 1137. https://doi.org/10.1016/S0360-3199(97)00016-5
  5. Service, R. Science 2002, 296, 1222. https://doi.org/10.1126/science.296.5571.1222
  6. Yoon, S. B.; Fang, B.; Kim, M.; Kim, J. H.; Yu, J.-S. "Nanostructured Materials, Elsevier", G.Wilde Ed., 2009, 173.
  7. Yu, H. C.; Fung, K. Z.; Guo, T. C.; Chang, W. L. Electrochim. Acta 2004, 50, 807. https://doi.org/10.1016/j.electacta.2004.01.116
  8. Salgado, J. R. C.; Antolini, E.; Gonzalez, E. R. J. Phys. Chem. B 2004, 108, 17767. https://doi.org/10.1021/jp0486649
  9. Chai, G. S.; Yu, J.-S. J. Mater. Chem. 2009, 19, 6842. https://doi.org/10.1039/b823053f
  10. Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vazquez-Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruna, H. D. J. Am. Chem. Soc. 2004, 126, 4043. https://doi.org/10.1021/ja038497a
  11. Markovic, A. N. M.; Schmidt, T. J.; StamenkovicA, V.; Ross, P. N. Fuel Cells 2001, 1, 105. https://doi.org/10.1002/1615-6854(200107)1:2<105::AID-FUCE105>3.0.CO;2-9
  12. Chen, G.-Y.; Delafuente, D. A.; Sarangapani, S.; Mallouk, T. E. Catal. Today 2001, 67, 341. https://doi.org/10.1016/S0920-5861(01)00327-3
  13. Liao, S.-J.; Holmes, K.-A.; Tsaprailis, H.; Birss, V. I. J. Am. Chem. Soc. 2006, 128, 3504. https://doi.org/10.1021/ja0578653
  14. Chai, G. S.; Shin, I. S.; Yu, J. -S. Adv. Mater. 2004, 16(22), 2057. https://doi.org/10.1002/adma.200400283
  15. Kim, J. H.; Fang, B.; Kim, M.; Yu, J. -S. Catalysis Today 2009, 146, 25. https://doi.org/10.1016/j.cattod.2009.02.013
  16. Kim, M.-S.; Fang, B.; Chaudhari, N. K.; Song, M.; Bae, T.-S.; Yu, J. -S. Electrochim. Acta 2010, 55, 4543. https://doi.org/10.1016/j.electacta.2010.03.007
  17. Luo, J.; Njoki, P. N.; Lin, Y.; Wang, L. -Y.; Zhong, C. -J. Electrochem. Commun. 2006, 8, 581. https://doi.org/10.1016/j.elecom.2006.02.001
  18. Papageorgopoulos, D. C.; Keijzer, M.; Veldhuis, J. B. J.; de Bruijn, F. A. J. Electrochem. Soc. 2002, 149, A1400. https://doi.org/10.1149/1.1510131
  19. Fernandez, J. L.; Walsh, D. A.; Bard, A. J. J. Am. Chem. Soc. 2005, 127, 357. https://doi.org/10.1021/ja0449729
  20. Raghuveer, V.; Ferreira, P. J.; Manthiram, A. Electrochem. Commun. 2006, 8, 807. https://doi.org/10.1016/j.elecom.2006.03.022
  21. Uchida, M.; Fukuoka, Y.; Sugawara, Y.; Eda, N.; Ohta, A. J. Electrochem. Soc. 1996, 143, 2245. https://doi.org/10.1149/1.1836988
  22. Fang, B.; Kim, J. H.; Kim, M.-S.; Yu, J.-S. Chem. Mater. 2009, 21, 789. https://doi.org/10.1021/cm801467y
  23. Bessel, C. A.; Laubernds, K.; Rodriguez, N. M.; Terry, R.; Baker, K. J. Phys. Chem. B 2001, 105, 1115. https://doi.org/10.1021/jp003280d
  24. Chai, G. S.; Yoon, S. B.; Yu, J.-S. Carbon 2005, 43, 3002. https://doi.org/10.1016/j.carbon.2005.06.015
  25. Liu, Y.-C.; Qiu, X. -P.; Huang, Y.-Q.; Zhu, W. -T. J. Power Sources 2002, 111, 160. https://doi.org/10.1016/S0378-7753(02)00298-7
  26. Satishkumar, B. C.; Vogl, E. M.; Govindaraj, A.; Rao, C. N. R. J. Phys. D 1996, 29, 3173. https://doi.org/10.1088/0022-3727/29/12/037
  27. Satishkumar, B. C.; Govindaraj, A.; Mofokeng, J.; Subbanna, G. N.; Rao, C. N. R. J. Phys. B 1996, 29, 4925. https://doi.org/10.1088/0953-4075/29/21/006
  28. Li, W.; Liang, C.; Qiu, J.; Zhou, W.; Han, H.; Wei, Z.; Sun, G.; Xin, Q. Carbon 2002, 40, 791. https://doi.org/10.1016/S0008-6223(02)00039-8
  29. Che, G.; Lakshmi, B. B.; Martin, C. R.; Fisher, E. R. Langmuir 1999, 15, 750. https://doi.org/10.1021/la980663i
  30. Lordi, V.; Yao, N.; Wei, J. Chem. Mater. 2001, 13, 733. https://doi.org/10.1021/cm000210a
  31. Ajayan, P. M.; Iijima, S. Nature 1993, 361, 333. https://doi.org/10.1038/361333a0
  32. Hertel, T.; Martel, R.; Avouris, P. J. Phys. Chem. B 1998, 102, 910. https://doi.org/10.1021/jp9734686
  33. Wong, S. S.; Harper, J. D.; Lansbery, P. L.; Lieber, C. M. J. Am. Chem. Soc. 1998, 120, 603. https://doi.org/10.1021/ja9737735
  34. Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Nature 1997, 386, 377. https://doi.org/10.1038/386377a0
  35. Rajalakshmi, N.; Dhathathreyan, K. S.; Sathish Kumar, B. C.; Govinda Raj, A. Electrochem. Acta 2000, 45, 4511. https://doi.org/10.1016/S0013-4686(00)00510-7
  36. Gundiah, G.; Govindaraj, A.; Rajalakshmi, N.; Dhathathreyan, K. S.; Rao, C. N. R. J. Mater. Chem. 2003, 13, 209. https://doi.org/10.1039/b207107j
  37. Dai, H.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E. Nature 1996, 384, 147. https://doi.org/10.1038/384147a0
  38. Hynek, S.; Fuller, W.; Bentley, J. Int. J. Hydrogen Energy 1997, 22, 601. https://doi.org/10.1016/S0360-3199(96)00185-1
  39. Che, G.; Lakshmi, B. B.; Martin, C. R.; Fisher, E. R. Langmuir 1999, 15, 750. https://doi.org/10.1021/la980663i
  40. Rajesh, B.; Thampi, K. R.; Bonard, J. M.; Viswanathan, B. J. Mater. Chem. 2000, 10, 1757. https://doi.org/10.1039/b002588g
  41. Lago, R. M.; Tsang, S. C.; Lu, K. L.; Chen, Y. K.; Green, M. L. H. J. Chem. Soc., Chem. Commun. 1955, 1355.
  42. Ang, L. M.; Hor, T. S. A.; Xu, G. Q.; Tung, C. H.; Zhao, S. P.; Wang, J. L. S. Carbon 2000, 45, 134.
  43. Lago, R. M.; Tsang, S. C.; Lu, K. L.; Chen, Y. K.; Green, M. L. H. J. Chem. Soc., Chem. Commun. 1995, 1355.
  44. Hwang, K. C. J. Chem. Soc., Chem. Commun. 1995, 173.
  45. Hiura, H.; Ebbesen, T. W.; Tanigaki, K. Adv. Mater. 1995, 7, 275. https://doi.org/10.1002/adma.19950070304
  46. Tian, Z. Q.; Jiang, S. P.; Liang, Y. M.; Shen, P. K. J. Phys. Chem. B 2006, 110, 5343. https://doi.org/10.1021/jp056401o
  47. Lordi, V.; Yao, N.; Wei, J. Chem. Mater. 2001, 13, 733. https://doi.org/10.1021/cm000210a
  48. Cullity, B. D. "Elements of X-ray diffraction", Addison- Wsley Pub. Inc., New York, 1984, Chap. 9.

Cited by

  1. Effect of activated graphite nanofibers on electrochemical activities of Pt–Ru nanoparticles for fuel cells vol.37, pp.9, 2011, https://doi.org/10.1007/s11164-011-0387-7
  2. Direct Carbonization of Al-Based Porous Coordination Polymer for Synthesis of Nanoporous Carbon vol.134, pp.6, 2012, https://doi.org/10.1021/ja208940u
  3. Effects of functional grafting on viscoelastic and toughness behaviors of multi-walled carbon nanotubes-reinforced polypropylene nano-composites vol.20, pp.5, 2012, https://doi.org/10.1007/s13233-012-0076-4
  4. Highly durable platinum nanoparticles on carbon derived from pitch-based carbon fibers for oxygen reduction reaction pp.2092-7673, 2017, https://doi.org/10.1007/s13233-017-5159-9