DOI QR코드

DOI QR Code

An Investigation of Icing Effects on the Aerodynamic Characteristics of KC-100 Aircraft

KC-100 항공기의 표면발생 Icing 형상 및 공력 영향성 연구

  • 정성기 (경상대학교 기계항공공학부 대학원) ;
  • 이창훈 (경상대학교 기계항공공학부 대학원) ;
  • 신성민 (경상대학교 기계항공공학부 대학원) ;
  • 명노신 (경상대학교 기계항공공학부, 항공기부품기술연구소 및 공학연구원) ;
  • 조태환 (경상대학교 기계항공공학부, 항공기부품기술연구소 및 공학연구원) ;
  • 정훈화 (한국항공우주산업) ;
  • 정재홍 (한국항공우주산업)
  • Received : 2010.04.02
  • Accepted : 2010.05.19
  • Published : 2010.06.01

Abstract

In-flight icing is a critical technical issue for aircraft safety and, in particular, ice accretions on aircraft surfaces can drastically impair aerodynamic performances and control authority. In order to investigate icing effects on the aerodynamic characteristics of KC-100 aircraft, a state-of-the-art CFD code, FENSAP-ICE, was used. A main wing section and full configuration of KC-100 aircraft were considered for the icing analysis. Also, shapes of iced area were calculated for the design of anti-/de-icing devices. The iced areas around leading edge of main wing and horizontal tail wing were observed maximum 7.07% and 11.2% of the chord length of wing section, respectively. In case of wind shield, 16.7% of its area turned out to be covered by ice. The lift of KC-100 aircraft were decreased to 64.3%, while the drag was increased to 55.2%.

비행 중 대기조건에 의한 결빙은 항공기 안전성과 직결되며, 특히 항공기 표면 발생 결빙은 공력 특성 변화를 야기하여 제어면 성능을 저해하는 요소가 된다. KC-100 항공기의 결빙에 의한 공력 영향성 조사를 위해 결빙 전문 CFD 코드인 FENSAP-ICE를 이용하였다. 항공기의 공력 특성을 대표하는 주날개 단면 익형을 먼저 고려하고 다음으로 전기체형상에 대해 결빙 해석을 수행하였다. 또한 Anti-Icing 및 De-Icing 장치 설계를 위해 항공기 부품별 결빙 영역 및 결빙 증식 크기를 조사하였다. 결빙 영역은 주날개 및 수평 꼬리날개의 앞전에서 단면 코드길이 기준 약 7.07%, 11.2% 범위를 나타냈고, Wind Shield의 경우 약 16.7%에서 결빙이 발생하였다. 결빙에 의한 공력특성 변화의 경우, 받음각 0도에서 KC-100 항공기의 양력은 64.3% 감소한 반면 항력은 55.2% 증가하였다.

Keywords

References

  1. Gent, R. W., Dart, N. P., and Cansdale, J. T., "Aircraft Icing", Philosophical Transactions of the Royal Society of London, Vol. 358, 2000, pp. 2873-2911.
  2. Lynch, F. T., and Khodadoust, A., "Effects of Ice Accretions on Aircraft Aerodynamics", Progress in Aerospace Sciences, Vol. 37, 2001, pp. 669-767. https://doi.org/10.1016/S0376-0421(01)00018-5
  3. "FAA Inflight Aircraft Icing Plan", Federal Aviation Administration, U.S. Department of Transportation, Washington D.C., April 1997.
  4. Ruff, G. A., and Berkowitz, B. M., "Users Manual for the NASA Lewis Ice Accretion Prediction Code(LEWICE)", NASA CR-185129, 1990.
  5. Bourgault, Y., Habashi, W. G., Dompierre, J., and Baruzzi, G. S., "A Finite Element Method Study of Eulerian Droplets Impingement Models", International Journal for Numerical Method in Fluids, Vol. 29, 1999, pp. 429-449. https://doi.org/10.1002/(SICI)1097-0363(19990228)29:4<429::AID-FLD795>3.0.CO;2-F
  6. Messinger B. L., "Equilibrium Temperature of an Unheated Icing Surface as a Function of Airspeed", Journal of the Aeronautical Sciences, Vol. 20, No. 1, 1953, pp. 29-42. https://doi.org/10.2514/8.2520
  7. "NTI Solution User Manual", Newmerical Technologies Int., 2008.
  8. "FLUENT 6.1 User's Guide", FLUENT Inc., 2003.
  9. Jung, S. K., Shin, S. M., Myong, R. S., Cho, T. H., Jeong, H. H., and Jung, J. H., "Ice Accretion Effect on the Aerodynamic Characteristics of KC-100 Aircraft", 48th AIAA Aerospace Sciences Meeting, Orlando, USA, 2010.

Cited by

  1. Quantitative analysis of a two-dimensional ice accretion on airfoils vol.26, pp.4, 2012, https://doi.org/10.1007/s12206-012-0223-z
  2. COMPUTATIONAL PREDICTION OF ICE ACCRETION AROUND A ROTORCRAFT AIR INTAKE vol.17, pp.2, 2012, https://doi.org/10.6112/kscfe.2012.17.2.100
  3. Scaling Methods for Icing Wind Tunnel Test vol.40, pp.2, 2012, https://doi.org/10.5139/JKSAS.2012.40.2.146
  4. Investigation of the Performance of Anti-Icing System of a Rotorcraft Engine Air Intake vol.41, pp.4, 2013, https://doi.org/10.5139/JKSAS.2013.41.4.253
  5. A Study on Structural Safety Analysis of Hub Space vol.23, pp.3, 2015, https://doi.org/10.7467/KSAE.2015.23.3.352
  6. A THREE-DIMENSIONAL UNSTRUCTURED FINITE VOLUME METHOD FOR ANALYSIS OF DROPLET IMPINGEMENT IN ICING vol.18, pp.2, 2013, https://doi.org/10.6112/kscfe.2013.18.2.041
  7. A Study on Truncated Flapped Airfoil for Efficient Icing Wind Tunnel Test vol.39, pp.6, 2011, https://doi.org/10.5139/JKSAS.2011.39.6.481