DOI QR코드

DOI QR Code

Cancellation of Phase Noise in 1.4 GHz RF Signal Transferred to a Remote Site through 13 km Fiber

13 km 광섬유를 통하여 원격지로 전송된 1.4 GHz RF 신호의 위상잡음 제거

  • Lee, Won-Kyu (Center for Emerging Measurement Standards, Korea Research Institute of Standards and Science) ;
  • Park, Chang-Yong (Center for Emerging Measurement Standards, Korea Research Institute of Standards and Science) ;
  • Mun, Jong-Chul (Center for Emerging Measurement Standards, Korea Research Institute of Standards and Science) ;
  • Yu, Dai-Hyuk (Center for Emerging Measurement Standards, Korea Research Institute of Standards and Science)
  • 이원규 (한국표준과학연구원 차세대표준연구단) ;
  • 박창용 (한국표준과학연구원 차세대표준연구단) ;
  • 문종철 (한국표준과학연구원 차세대표준연구단) ;
  • 유대혁 (한국표준과학연구원 차세대표준연구단)
  • Received : 2010.04.01
  • Accepted : 2010.06.03
  • Published : 2010.06.25

Abstract

A fiber-phase-noise compensating system was constructed for a 1.4 GHz reference frequency transferred through a 13-km-long fiber spool. The transfer instability was dependent on the temperature variation of the compensating system. With the room temperature variation stabilized within $0.3^{\circ}C$, the transfer instability was $4.6{\times}10^{-14}$ at 0.8 s of average time and $2.5{\times}10^{-16}$ at 1000 s of average time with the fiber phase noise compensated. However, with the room temperature changed by $3.5^{\circ}C$, the transfer instability was $6.8{\times}10^{-14}$ at 1.2 s of average time and $3.0{\times}10^{-15}$ at 1000 s of average time. From this result, the temperature stability condition for the experimental setup could be determined to obtain a transfer instability of $10^{-16}$ at 1000 s of average time.

13 km 광섬유를 통해 1.4 GHz의 기준 주파수를 전송할 때, 광섬유에서 발생하는 위상잡음을 제거하는 시스템을 구성하였다. 전송된 주파수의 안정도 성능은 실험장치의 온도변화폭에 의존하였다. 실험실의 온도변화폭이 $0.3^{\circ}C$ 이내로 유지되는 동안에는 광섬유의 위상잡음을 제거했을 때, 원격지에 전송된 신호가 0.8초의 평균 시간에서 $4.6{\times}10^{-14}$, 1000초의 평균 시간에서 $2.5{\times}10^{-16}$의 상대주파수 전송 안정도를 보여 만족할 만한 결과이었으나, 실험실의 온도가 $3.5^{\circ}C$ 범위로 변할 때에는, 1.2초의 평균 시간에서 $6.8{\times}10^{-14}$, 1000초의 평균 시간에서 $3.0{\times}10^{-15}$의 전송 안정도를 보였다. 이 결과로부터 1000초의 평균시간에서 $10^{-16}$ 수준의 상대주파수 안정도를 얻기 위해서 요구되는 실험장치의 온도 안정도 조건을 제시할 수 있었다.

Keywords

References

  1. C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy $Al^+$ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010). https://doi.org/10.1103/PhysRevLett.104.070802
  2. C. Daussy, O. Lopes, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of $10^{-17}$,” Phys. Rev. Lett. 94, 203904 (2005). https://doi.org/10.1103/PhysRevLett.94.203904
  3. A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B 78, 25-30 (2004). https://doi.org/10.1007/s00340-003-1335-z
  4. O. Lopez, A. Amy-Klein, C. Daussy, C. Chardonnet, F. Narbonneau, M. Lurs, and G. Santarelli, “86-km optical link with a resolution of $2{\times}10^{-18}$ for RF frequency transfer,” Eur. Phys. J. D. 48, 35-41 (2008). https://doi.org/10.1140/epjd/e2008-00059-5
  5. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101-1-25 (2007). https://doi.org/10.1063/1.2437069
  6. J. Ye, J. L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459-1467 (2003). https://doi.org/10.1364/JOSAB.20.001459
  7. F. Narbonneau, M. Lours, S. Bize, A. Clairon, G. Santarelli, O. Lopez, C. Daussy, A. Amy-Klein, and C. Chardonnet, “High resolution frequency standard dissemination via optical fiber metropolitan network,” Rev. Sci. Instr. 77, 064701 (2006). https://doi.org/10.1063/1.2205155
  8. M. Kumagai, M. Fujieda, S. Nagano, and M. Hosokawa, “Stable radio frequency transfer in 114 km urban optical fiber link,” Opt. Lett. 34, 2949-2951 (2009). https://doi.org/10.1364/OL.34.002949
  9. K. Sato, T. Hara, M. Fujishita, S. Kuji, S. Tsuruta, Y. Tamura, T. Sasao, K. Sato, and S. Manabe, “Application of phase-stabilized optical fiber in transmission of reference and IF signals in VLBI observation,” IEEE Trans. Instr. Meas. 41, 385-389 (1992). https://doi.org/10.1109/19.153334
  10. K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishiro, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module,” IEEE Trans. Instr. Meas. 19, 19-24 (2000).
  11. R. T. Logan Jr. and G. F. Lutes, “High stability microwave fiber optic systems: demonstrations and applications,” in Proc. 1992 IEEE Frequency Control Symposium (Hershey, PA, USA, May 1992), pp. 310-316.
  12. P. A. Krug, M. I. Large, and R. G. Davison, “Optical fiber technique for remote stabilization of RF phase,” Optical Fiber Technology 5, 175-184 (1999). https://doi.org/10.1006/ofte.1998.0291
  13. M. Calhoun, R. Sydnor, and W. Diener, “A stabilized 100-megahertz and 1-gigahertz reference frequency distribution for Cassini radio science,” IPN Progress Report 42-148, 1-11 (2002).
  14. J. Frisch, D. G. Brown, and E. L. Cisneros, “The RF phase distribution and timing system for the NLC,” in Proc. XX International Linac Conference (Monterey, California, USA, Aug. 2000), pp. 745-747.
  15. J. Frisch, D. Bernstein, D. Brown, and E. Cisneros, “A high stability, low noise RF distribution system,” in Proc. IEEE Particle Accelerator Conference (Chicago, IL, USA, Aug. 2001), vol. 2, pp. 816-818.
  16. W.-K. Lee, D.-S. Yee, Y.-B. Kim, and T. Y. Kwon, “Highly stable RF transfer over a fiber network by fiber-induced phase noise cancellation,” Hankook Kwanghak Hoeji (Korean Opt. Photon.) 17, 514-518 (2006). https://doi.org/10.3807/KJOP.2006.17.6.514
  17. J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen JR., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105-120 (1971). https://doi.org/10.1109/TIM.1971.5570702

Cited by

  1. STABILIZATION OF REFERENCE SIGNAL TRANSMISSION SYSTEM IN RADIO TELESCOPE FOR VLBI vol.28, pp.3, 2013, https://doi.org/10.5303/PKAS.2013.28.3.095