Effects of Soil pH on Nutritional and Functional Components of Chinese Cabbage (Brassica rapa ssp. campestris)

토양 pH가 배추(Brassica rapa ssp. campestris)의 영양성분과 기능성분에 미치는 영향

  • Lee, Jo-Eun (Department of Food Science and Technology, Chungnam National University) ;
  • Wang, Pingjuan (Department of Food Science and Technology, Chungnam National University) ;
  • Kim, Gyung-Yun (Department of Food Science and Technology, Chungnam National University) ;
  • Kim, Sung-Han (Department of Food Science and Technology, Chungnam National University) ;
  • Park, Su-Hyoung (Vegetablel Research Division, National Institute of Horticultural & Herbal Science) ;
  • Hwang, Yong-Soo (Department of Horticultural Science, Chungnam National University) ;
  • Lim, Yong-Pyo (Department of Horticultural Science, Chungnam National University) ;
  • Lee, Eun-Mo (Horticultural Research Division, Chungnam Agricultural Research & Extension Services) ;
  • Ham, In-Ki (Horticultural Research Division, Chungnam Agricultural Research & Extension Services) ;
  • Jo, Man-Hyun (Horticultural Research Division, Chungnam Agricultural Research & Extension Services) ;
  • An, Gil-Hwan (Department of Food Science and Technology, Chungnam National University)
  • Received : 2009.08.31
  • Accepted : 2010.01.06
  • Published : 2010.06.30

Abstract

The contents of functional and nutritional components of 13 cultivars of Chinese cabbage (CC, $Brassica$ $rapa$ subspecies $campestris$) were analyzed to compare the effects of soil pH of the greenhouse (pH 6.2) and outdoor (pH 7.6). The CC cultivated on pH 6.2 (CC-6.2) soil contained significantly increased amounts (2-9 fold) of pectin, crude protein, vitamin C and vitamin E compared to the counterpart (CC-7.6). The contents of ash and the minerals (Ca, Fe, Na, and Mn) were also significantly increased in CC-6.2. However, CC-6.2 contained 40-50% lower contents of reducing sugars, cellulose and crude fat than CC-7.6. CC-7.6 contained more glucosinolates, gluconasturtiin (18.33 vs. $1.16nmol{\cdot}g^{-1}$ wet weight) and gluconapin (145 vs. $2nmol{\cdot}g^{-1}$ wet wt), than CC-6.2. In conclusion, CC-6.2 had an improved texture (high pectin and low cellulose) and nutritional value (high in protein, Ca, Fe, vitamin C, and E), whereas the CC-7.6 had better taste (high in reducing sugars) and anticancer functionality (high in glucosinolates).

비닐하우스의 낮은 pH 토양(pH6.2)과 노지의 높은 pH 토양(pH7.6) 의 pH 차이가 배추 품질에 미치는 영향을 알아보기 위하여 13종 배추의 기능성 성분과 영양성분을 분석하였다. 낮은 pH 토양에서 재배된 배추는 높은 pH 토양에서 재배된 배추에 비하여 펙틴, 조단백질, 비타민 C, 비타민 E의 함량이 현저히 높았으며 회분과 무기질(Ca, Fe, Na, Mn) 또한 높았다. 그러나 환원당, 셀룰로오스, 조지방의 함량은 낮은 pH 토양의 배추가 높은 pH 토양의 것 보다 40-50% 낮았다. 글루코시놀레이트의 일종인 gluconasturtiin(18.33 vs. $1.16nmol{\cdot}g^{-1}$ wet weight)과 gluconapin(145 vs. $2nmol{\cdot}g^{-1}$ wet weight) 은 높은 pH 토양의 배추에서 낮은 pH 것보다 의미 있게 높았다. 본 연구 결과 낮은 pH 토양에서 재배된 배추는 펙틴의 함량이 높고 셀룰로오스의 함량이 낮아 조직감이 좋으며 단백질, Ca, Fe, vitamin C와 E의 함량이 높아 영양성분이 향상 되었으나 높은 pH 토양에서 재배된 배추는 환원당과 글루코시놀레이트의 함량이 많아 맛과 항암성은 높음을 알 수 있었다.

Keywords

References

  1. Aaran, R.K and T. Nikkari. 1988. HPLC method for the simultaneous determination of beta-carotene, retinol and alphatocopherol in serum. J. Pharma. Biomed. Anal. 6:853-857. https://doi.org/10.1016/0731-7085(88)80101-8
  2. Agius F, R. Gonzalez-Lamothe, J.L. Caballero, J. Munoz-Blanco, M.A. Botella, and V. Valpuesta. 2003. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat. Biotechnol. 21:177-181. https://doi.org/10.1038/nbt777
  3. AOAC. 1995. Official Method of Analysis. 16th ed. The Assn. of Ofiic. Anal. Chem.: Washington DC.
  4. Bettger, W. J. 1993. Zinc and selenium, site-specific versus general antioxidant. Can. J. Physiol. Pharm. 71:721-724. https://doi.org/10.1139/y93-108
  5. Bradford, M.M. 1976. A rapid and sensitive methods for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Divisi, D., S. Di Tommaso, S. Salvemini, M. Garramone, and R. Crisci. 2006. Diet and cancer. Acta Biomed. 77:118-123.
  7. Grubb, C.D. and S. Abel. 2006. Glucosinolate metabolism and its control. Trend. Plant Sci. 11:89-100. https://doi.org/10.1016/j.tplants.2005.12.006
  8. Harbaum, B., E.M. Hubbermann, C. Wolff, R. Herges, Z. Zhu, and K. Schwarz. 2007. Identification of flavonoids and hydroxycinnamic acids in pak choi varieties (Brassica campestris L. ssp. chinensis var. communis) by HPLC-ESI-MSn and NMR and their quantification by HPLC-DAD. J. Agric. Food Chem. 55:8251-8260. https://doi.org/10.1021/jf071314+
  9. Hardisson, A., C. Rubio, M. Martin, R. Alvarez, and E. Diaz. 2001. Mineral composition of the banana (Musa acuminata) from the island of Tenerife. Food Chem. 153-161.
  10. Hayes, J.D, M.O. Kelleher, and I.M. Eggleston. 2008. The cancer chemopreventive actions of phytochemicals derived from glucosinolates. Eur. J. Nutr. 47:73-88. https://doi.org/10.1007/s00394-008-2009-8
  11. Hong, E.Y. and G.H. Kim. 2006. Changes in vitamin C, amino acid and sugar levels in Chinese cabbages during storage. Kor. J. Food Preserv. 13:589-595.
  12. Jung, H.S., Y.T. Ko, and S.J. Lim. 1985. Effect of sugars on Kimchi fermentation and on the stability of ascorbic acid. Kor. J. Food Nutr. 18:36-45.
  13. Khokhar, S. and A.C. Kapoor. 1990. Effect of dietary fibers on bioavailability of vitamin A and thiamine. Plant Foods Hum. Nutr. 40:259-65. https://doi.org/10.1007/BF02193849
  14. Kim, D.W., O. Bobleter, and G. Bonn. 1986. Enzymatic hydrolysis of cellulose and plant biomass. Kor. Chem. Eng. Res. 24:53-62.
  15. Lampe, J.W. and S. Peterson. 2002. Brssica, biotransformation and cancer risk: genetic polymorphisms alter the preventive effects of cruciferous vegetables. J. Nutr. 132:2991-2994. https://doi.org/10.1093/jn/131.10.2991
  16. Manabe, M. and J. Naohara. 1986. Properties of pectin in Satsuma mandarin fruits (Citrus Unshiu Marc.) Nippon Shokuhin Kogyo Gakkishi. 33:602-608. https://doi.org/10.3136/nskkk1962.33.8_602
  17. Moreno, D.A., G. Víllora, J.M. Ruiz, and L. Romero. 2003. Growth conditions, elemental accumulation and induced physiological changes in Chinese cabbage. Chemosphere. 52:1031-1040. https://doi.org/10.1016/S0045-6535(03)00330-8
  18. Nan, H.M., J.W. Park, Y.J. Song, H.Y. Yun, J.S. Park, T. Hyun, S.J. Youn, Y.D. Kim, J.W. Kang, and H. Kim. 2005. Kimchi and soybean pastes are risk factors of gastric cancer. World J. Gastroenterol. 11:3175-3181. https://doi.org/10.3748/wjg.v11.i21.3175
  19. Romheld, V. and H. Marschner. 1991. Function of micronutrients in plants. In: J.J. Mortvedt, F.R. Cox, L.M. Shuman, R.M. Welch, S.H. Michelson, R.J. and Luxmoore (eds). Micronutrients in agriculture. 2nd ed. Soil science society of America, Inc. Madison, WI.
  20. Ryu, C.H., J.H. Jung, C.H. Yang, J.H. Yoo, T.G. Kim, and J.D. Kim. 2006. One-to-one company-to-rural town co relationship for fertilizer practice and soil management. Rural Development Administration, Department of Rice and Winter Cereal Crop, Suwon, Korea.
  21. Savas, H., S. Kolayli, and E. Keha. 1995. Copper levels and glutathione reductase activity in workers of Murgul. Turk. J. Med. Sci. 25:187-188.
  22. Schneider, C. 2005. Chemistry and biology of vitamin E. Mol. Nutr. Food Res. 49:7-30. https://doi.org/10.1002/mnfr.200400049
  23. Tahvonen, R. 1993. Contents of selected elements in some fruits, berries and vegetables on the Finnish market in 1987-1989. J. Food Compos. Anal. 6:75-86. https://doi.org/10.1006/jfca.1993.1009
  24. Vaskonen T. 2003. Dietary minerals and modification of cardiovascular risk factors. J. Nutr Biochem. 14:492-506. https://doi.org/10.1016/S0955-2863(03)00074-3
  25. Wang, X.H., B.E. Cavell, S.S. Alwi, and G. Packham. 2009. Inhibition of hypoxia inducible factor by phenethyl isothiocyanate. Biochem. Pharmacol. Epub. April 16.
  26. Wardlaw, G.M. 1999. Perspectives in nutrition. 4th ed. McGraw- Hill Co., Inc: Boston, MA, USA.
  27. White P.J. and M.R. Broadley. 2009. Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 182:49-84. https://doi.org/10.1111/j.1469-8137.2008.02738.x
  28. Yu, Q., A. Hlavacka, T. Matoh, D. Volkmann, D. Menzel, H.E. Goldbach, and F. Balus. 2002. Short-term boron deprivation inhibits endocytosis of cell wall pectins in meristematic cells of maize and wheat root apices. Plant Physiol. 130:415-421. https://doi.org/10.1104/pp.006163
  29. Zang, Y.X., H. Kim, Y.D. Park, D.H. Kim, and S.B. Hong. 2008. Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1. BMB Rep. 41:472-478. https://doi.org/10.5483/BMBRep.2008.41.6.472