Analysis of Mutant Chinese Cabbage Plants Using Gene Tagging System

Gene Tagging System을 이용한 돌연변이 배추의 분석

  • Yu, Jae-Gyeong (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Lee, Gi-Ho (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Lim, Ki-Byung (School of Applied Sciences, Kyungpook National University) ;
  • Hwang, Yoon-Jung (School of Applied Sciences, Kyungpook National University) ;
  • Woo, Eun-Taek (Breeding Research Institute, Carrotop Seed Co.) ;
  • Kim, Jung-Sun (Functional Biomaterial Division, National Academy of Agricultural Science) ;
  • Park, Beom-Seok (Genomics Division, National Academy of Agricultural Science) ;
  • Lee, Youn-Hyung (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Park, Young-Doo (Department of Horticultural Biotechnology, Kyunghee University)
  • 유재경 (경희대학교 생명과학대학 원예생명공학과) ;
  • 이기호 (경희대학교 생명과학대학 원예생명공학과) ;
  • 임기병 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 황윤정 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 우은택 (캐로톱씨드 육종연구소) ;
  • 김정선 (농촌진흥청 국립농업과학원 농업생명자원부 기능성물질개발과) ;
  • 박범석 (농촌진흥청 국립농업과학원 농업생명자원부 유전자분석개발과) ;
  • 이윤형 (경희대학교 생명과학대학 원예생명공학과) ;
  • 박영두 (경희대학교 생명과학대학 원예생명공학과)
  • Received : 2009.06.23
  • Accepted : 2009.07.13
  • Published : 2010.06.30

Abstract

The objectives of this study were to analyze mutant lines of Chinese cabbage ($Brassica$ $rapa$ ssp. $pekinensis$) using gene tagging system (plasmid rescue and inverse polymerase chain reaction) and to observe the phenotypic characteristics. Insertional mutants were derived by transferring DNA (T-DNA) of $Agrobacterium$ for functional genomics study in Chinese cabbage. The hypocotyls of Chinese cabbage 'Seoul' were used to obtain transgenic plants with $Agrobacterium$ $tumefaciens$ harboring pRCV2 vector. To tag T-DNA from the Chinese cabbage genomic DNA, plasmid rescue and inverse PCR were applied for multiple copies and single copy insertional mutants. These techniques were successfully conducted to Chinese cabbage plant with high efficiency, and as a result, T-DNA of pRCV2 vector showed distinct various integration patterns in the transgenic plant genome. The polyploidy level analysis showed the change in phenotypic characteristics of 13 mutant lines was not due to variation in somatic chromosome number. Compared with wild type, the $T_1$ progenies showed varied phenotypes, such as decreased stamen numbers, larger or smaller flowers, upright growth habit, hairless leaves, chlorosis symptoms, narrow leaves, and deeply serrated leaves. The polyploidy level analysis showed the change in phenotypic characteristics of 13 mutant lines was not due to variation in somatic chromosome number. To tag T-DNA from the Chinese cabbage genomic DNA, plasmid rescue and inverse PCR were applied for multiple copies and single copy insertional mutants. Mutants that showed distinct phenotypic difference compared to wild type with 1 copy of T-DNA by Southern blot analysis, and with 2n = 20 of chromosome number were selected. These selected mutant lines were sequenced flanking DNA, mapped genomic loci, and the genome information of the lines is being recorded in specially developed database.

본 연구는 gene tagging system(plasmid rescue와 inverse polymerase chain reaction)을 사용하여 얻은 배추($Brassica$ $rapa$ ssp. $pekinensis$) 형질전환체 계통을 분석하고 이들의 표현형을 관찰하고자 수행되었다. 배추의 기능유전체 연구를 위해 $Agrobacterium$의 전이 DNA(T-DNA)를 사용하여 삽입돌연변이체를 유기하였다. 형질전환체는 '서울' 배추 품종의 pRCV2 vector를 가진 $Agrobacterium$ $tumefaciens$을 접종하여 얻었다. 형질전환 $T_1$ 세대는 비형질전환체와 비교하여, 수술 수의 감소, 크거나 작은 꽃, 직립생장형, 잎에 털이 없는 것, 잎의 황백화 현상, 잎이 좁거나 결각이 깊은 것과 같은 다양한 표현형을 보였다. 형질전환 계통 중에서 발견된 13개의 돌연변이 계통의 표현형 변화는 체세포의 배수성 분석을 통하여 염색체 수의 변화에 기인하지 않은 것을 확인하였다. 배추 genomic DNA에서 T-DNA의 위치 확인을 위해 multiple copy와 single copy 형질전환체에 plasmid rescue와 inverse PCR 방법을 각각 적용하였다. 비형질전환체와 비교하여 뚜렷한 표현형적 차이를 보이고 Southern blot 분석 결과 1 copy의 T-DNA를 가지며 염색체 수가 20(2n)인 돌연변이체를 선발하여, flanking DNA 염기서열을 확인하고 배추 염색체내에서 각각의 유전자좌를 표시하였으며 이들 계통들에 대하여 데이터베이스를 작성 중에 있다.

Keywords

References

  1. Bevan, M. 1984. Binary Agrobacterium vectors for transformation. Nucleic Acid Res. 12:8709-8720.
  2. Contreras, R.N., T.G. Ranney, and S.P. Tallury. 2007a. Reproductive behavior of diploid and allotetraploid Rhododendron L. 'Fragrant Affinity'. HortScience 42:31-34.
  3. Contreras, R.N., T.G. Ranney, S.R. Milla-Lewis, and G.C. Yencho. 2007b. Investigating parentage and hybridity of three Azaleodendrons using AFLP analysis. HortScience 42:740-743.
  4. Ge, H., A.J. Walhout, and M. Vidal. 2003. Integrating 'omic' information: a bridge between genomics and systems biology. Trends Genet. 19:551-560. https://doi.org/10.1016/j.tig.2003.08.009
  5. Goff, S.A., D. Ricke, T.H. Lan, G. Presting, R. Wang, M. Dunn, J. Glazebrook, A. Sessions, P. Oeller, H. Varma, D. Hadley, D. Hutchison, C. Martin, F. Katagiri, B.M. Lange, T. Moughamer, Y. Xia, P. Budworth, J. Zhong, T. Miguel, U. Paszkowski, S. Zhang, M. Colbert, W.L. Sun, L. Chen, B. Cooper, S. Park, T.C. Wood, L. Mao, P. Quail, R. Wing, R. Dean, Y. Yu, A. Zharkikh, R. Shen, S. Sahasrabudhe, A. Thomas, R. Cannings, A. Gutin, D. Pruss, J. Reid, S. Tavtigian, J. Mitchell, G. Eldredge, T. Scholl, R.M. Miller, S. Bhatnagar, N. Adey, T. Rubano, N. Tusneem, R. Robinson, J. Feldhaus, T. Macalma, A. Oliphant, and S. Briggs. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92-100. https://doi.org/10.1126/science.1068275
  6. Hoekema, A., P.R. Hirsch, P.J.J. Hooykaas, and R.A. Schilperoort. 1983. A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303:179-180. https://doi.org/10.1038/303179a0
  7. Hoekema, A., P.W. Roelvink, P.J.J. Hooykaas, and R.A. Schilperoort. 1984. Delivery of T-DNA from the Agrobacterium tumefaciens chromosome into plant cells. EMBO J. 11:2485-2490.
  8. Holtorf, H., M.C. Guitton, and R. Reski. 2002. Plant functional genomics. Naturwissenschaften 89:235-249. https://doi.org/10.1007/s00114-002-0321-3
  9. Kim, H.S., S.H. Kim, and Y.D. Park. 2003. Development of rescue cloning vector with phosphinothricin resistant gene for effective T-DNA tagging. J. Kor. Soc. Hort. Sci. 44:407-411.
  10. Kim, J.S., T.Y. Chung, G.J. King, M. Jin, T.J. Yang, Y.M. Jin, H.I. Kim, and B.S. Park. 2006. A sequence-tagged linkage map of Brassica rapa. Genetics 174:29-39. https://doi.org/10.1534/genetics.106.060152
  11. Lee, M.K., H.S. Kim, J.S. Kim, S.H. Kim, and Y.D. Park. 2004. Agrobacterium-mediated transformation system for large-scale production of transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) plants for insertional mutagenesis. J. Plant. Biol. 47:300-306. https://doi.org/10.1007/BF03030544
  12. Lim, K.B., H. De Jong, T.J. Yang, J.Y. Park, and S.J. Kwon. 2005. Characterization of rDNAs and tandem repeats in heterochromatin of Brassica rapa. Mol. Cells 19:436-444.
  13. Lim, K.B., T.J. Yang, Y.J. Hwang, and J.S. Kim. 2007. Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J. 49:173-183. https://doi.org/10.1111/j.1365-313X.2006.02952.x
  14. Osborn, T.C., J.C. Pires, J.A. Birchler, D.L. Auger, Z.J. Chen, H. Lee, L. Comai, A. Madlug, R.W. Doerge, V. Colot, and R.A. Martienssen. 2003. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 19:141-147. https://doi.org/10.1016/S0168-9525(03)00015-5
  15. Park, J.Y., D.H. Koo, C.P. Hong, S.J. Lee, and J.W. Jeon. 2005. Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kb gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5. Mol. Gen. Genet. 274:579-588. https://doi.org/10.1007/s00438-005-0041-4
  16. Pereira, A. 2000. A transgenic perspective on plant functional genomics. Transgenic Res. 9:245-260. https://doi.org/10.1023/A:1008967916498
  17. Soltis, D.E., P.S. Soltis, and J.A. Tate. 2003. Advances in the study of polyploidy since plant speciation. New Phytol. 161:173-191. https://doi.org/10.1046/j.1469-8137.2003.00948.x
  18. Van Kavaveke, N., G. Engler, M. Holsters, S. Van den Elsacker, I. Zaenen, R.A. Schilperoort, and J. Schell. 1974. Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252:169-170. https://doi.org/10.1038/252169a0
  19. Van Ooijen, J.W. and R.E. Voorrips 2001. $JoinMap^{{\circledR}}$ version 3.0: software for the calculation of genetic linkage maps, Wageningen, Plant Research International.