Discrimination of Korean Apple Cultivars Using Combination of RAPD-SCAR Markers

RAPD-SCAR 마커 조합을 이용한 국내 육성 사과 품종 판별

  • Cho, Kang-Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Heo, Seong (Apple Experiment Station, National Institute of Horticultural & Herbal Science) ;
  • Kim, Hyun-Ran (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Kim, Jeong-Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Shin, Il-Sheob (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Han, Sang-Eun (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Kim, Se-Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Kim, Dae-Hyun (Fruit Research Division, National Institute of Horticultural & Herbal Science)
  • 조강희 (국립원예특작과학원 과수과) ;
  • 허성 (국립원예특작과학원 사과시험장) ;
  • 김현란 (국립원예특작과학원 과수과) ;
  • 김정희 (국립원예특작과학원 과수과) ;
  • 신일섭 (국립원예특작과학원 과수과) ;
  • 한상은 (국립원예특작과학원 과수과) ;
  • 김세희 (국립원예특작과학원 과수과) ;
  • 김대현 (국립원예특작과학원 과수과)
  • Received : 2010.05.04
  • Accepted : 2010.07.26
  • Published : 2010.10.31

Abstract

Conventional methods for identification of apple cultivars are based on the evaluation of sets of morphological characteristics, however, closely related cultivars often cannot be distinguished by morphological traits. This study was conducted to develop DNA markers for discrimination of the apple cultivars bred in Korea. Thirty random primers generated eighty-three random amplified polymorphic DNA (RAPD) markers from thirty-one Korean bred and introduced apple cultivars. Fifty-two RAPD fragments were cloned and sequenced for conversion into sequence characterized amplified region (SCAR) markers. Among them only seventeen SCAR markers resulted in the amplification of single major bands the same size as the RAPD fragment cloned. Several combinations of six (AN11_433, AN08_566, A408_592, AK17_653, AO04_711, AO04_779 or AW15_368, AN11_433, A408_592, AK17_653, AO04_711, AO04_779, or AL1_427, AN11_433, AN08_566, A408_592, AK17_653, AO04_779) to seven (AL1_427, AN11_433, AN08_566, A408_592, AK17_653, AM16_708, AO04_779 or A330_424, AN11_433, AG14_502, AN08_566, A408_592, AK17_653, AO04_779 or A330_424, AN11_433, AK14_564, A408_592, AK17_653, AM16_708, AT14_789) SCAR markers provided enough polymorphism to identify sixteen Korean apple cultivars among thirty-one tested cultivars. Therefore, application of the seventeen SCAR markers was sufficient to identify the thirty-one tested apple cultivars. These markers could be utilized as a reliable tool for cultivar discrimination of Korean apples.

사과 품종을 구분하는 일반적인 방법은 형태적인 특성 평가를 근거로 하지만 유전적으로 밀접하게 연관되어 있는 품종들은 형태적 형질에 의해 품종을 구별하기는 불가능하다. 본 연구는 사과 국내 육성 품종을 정확히 판별할 수 있는 DNA 마커를 개발하고자 수행하였다. 국내육성과 도입 사과 31품종으로부터 30종의 임의 프라이머를 이용한 RAPD 분석을 통해 품종 간 다형성을 나타내는 마커 83종을 얻었다. SCAR 마커로 전환하기 위해 52종의 RAPD 단편들을 클로닝 및 염기서열 분석을 하였고 이들 중에서 17종의 SCAR 마커가 클로닝된 RAPD 단편과 동일한 크기의 단일 밴드가 증폭되었다. SCAR 마커 중 6종(AN11_433, AN08_566, A408_592, AK17_653, AO04_711, AO04_779와 AW15_368, AN11_433, A408_592, AK17_653, AO04_711, AO04_779, 또 는 AL1_427, AN11_433, AN08_566, A408_592, AK17_653, AO04_779) 또는 7종의(AL1_427, AN11_433, AN08_566, A408_592, AK17_653, AM16_708, AO04_779와 A330_424, AN11_433, AG14_502, AN08_566, A408_592, AK17_653, AO04_779 또는 A330_424, AN11_433, AK14_564, A408_592, AK17_653, AM16_708, AT14_789) 조합을 이용하여 국내 육성 16품종의 판별이 가능하였다. 따라서 17종의 SCAR 마커를 적용하여 총 31품종의 국내 육성 또는 도입품종의 구분이 가능하였으며 이들 SCAR 마커는 금후 사과 국내 육성 품종 판별을 위해 효과적으로 이용될 수 있을 것으로 판단되었다.

Keywords

References

  1. Bernet, G.P., S. Bramardi, D. Calvache, E.A. Carbonell, and M.J. Asins. 2003. Applicability of molecular markers in the context of protection of new varieties of cucumber. Plant Breeding 122:146-152. https://doi.org/10.1046/j.1439-0523.2003.00838.x
  2. Ellsworth, D.L., K.D. Rittenhouse, and R.L. Honeycutt. 1993. Artifactual variation in randomly amplified polymorphic DNA banding patterns. BioTechniques 14:214-217.
  3. Galli, Z., G. Halaz, E. Kiss, L. Heszky, and J. Dobranszki. 2005. Molecular identification of commercial apple cultivars with microsatellite markers. HortScience 40:1974-1977.
  4. Gianfranceschi, L., N. Seglias, R. Tarchini, M. Komjanc, and C. Gessler. 1998. Simple sequence repeats for genetic analysis of apple. Theor. Appl. Genet. 96:1069-1076. https://doi.org/10.1007/s001220050841
  5. Goulao, L. and C.M. Oliveira. 2001. Molecular characterisation of cultivars of apple (Malus ${\times}$ domestica Borkh.) using microsatellite (SSR and ISSR) markers. Euphytica 122:81-89. https://doi.org/10.1023/A:1012691814643
  6. Goulao, L., L. Cabrita, C.M. Oliveira, and J.M. Leitao. 2001. Comparing RAPD and AFLPTM analysis in discrimination and estimation of genetic similarities among apple (Malus domestica Borkh.) cultivars. Euphytica 119:259-270. https://doi.org/10.1023/A:1017519920447
  7. Guilford, P., S. Prakash, J.M. Zhu, E. Rikkerink, S. Gardiner, H. Bassett, and R. Forster. 1997. Microsatellites in Malus $\times$ domestica (apple): abundance, polymorphism and cultivar identification. Theor. Appl. Genet. 94:249–254. https://doi.org/10.1007/s001220050407
  8. Harada, T., K. Matsukawa, T. Sato, R. Ishikawa, M. Niizeki, and K. Saito. 1993. DNA-RAPD detect genetic variation and paternity in Malus. Euphytica 65:87-91. https://doi.org/10.1007/BF00022569
  9. Janick, J., J.N. Cummins, S.K. Brown, and M. Hemmat. 1996. Apples. p. 1-77. In: J. Janick, J.N. Moore, eds, Fruit Breeding, Vol I: Tree and Tropical Fruits. John Wiley and Sons, N.Y.
  10. Jun, J.H., K.H. Chung, S.B. Jeong, and H.J. Lee. 2005. Identification of RAPD and AFLP markers linked to the fruit acidity gene D in Peach (Prunus persica). J. Kor. Soc. Hort. Sci. 46:43-48.
  11. Koller, B., A. Lehmann, J.M. McDermott, and C. Gessler. 1993. Identification of apple cultivars using RAPD markers. Theor. Appl. Genet. 85:901-904.
  12. Korban, S.S. and H. Chen. 1992. Apples. P. 203-227. In: F. Hammerschlag, R. Litz, eds, Biotechnology of perennial fruit tree crops. CAB International, Oxnard, C.A.
  13. Muralidharan, K. and E.K. Wakeland. 1993. Concentration of primer and template qualitatively affects products in randomamplified polymorphic DNA PCR. BioTechniques 14:362-364.
  14. Paran, I. and R.W. Michelmore. 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 85:985-993.
  15. Xu, H., D.J. Wilson, S. Arulsekar, and A.T. Bakalinsky. 1995. Sequence-specific polymerase chain-reaction markers derived from randomly amplified polymorphic DNA markers for fingerprinting grape (Vitis) rootstocks. J. Amer. Soc. Hort. Sci. 120:714-720.