Pectin Solubility and Water Relations during Vase Life of Cut Flowers

  • Received : 2009.11.26
  • Accepted : 2010.05.03
  • Published : 2010.08.31

Abstract

Pectic polymers are major components of primary cell walls having a high water-binding ability. Pectin levels and solubility were quantified in stems and petals of rose ($Rosa$ $hybrida$ L.), chrysanthemum ($Chrysanthemum$ $morifolium$ Ramat.), carnation ($Dianthus$ $caryophyllus$ L.), and snapdragon ($Anthirrhinum$ $majus$ L.) and related to the rate of solution uptake and to the rate of fresh weight increase during the vase life of these cut flowers. Total pectins in stems ranged from 176 ${\mu}g{\cdot}mg^{-1}$ in chrysanthemum to 203 ${\mu}g{\cdot}mg^{-1}$ in carnation. Water soluble pectin accounted for only 1.9 to 3.6% of total stem pectins, in rose and snapdragon, respectively, whereas chelator-soluble pectins ranged from 3.8% of total in chrysanthemum to 10.1% in snapdragon. Petals of each species had a higher proportion of water- and chelator-soluble pectins than stems. Water uptake rate during vase life was 0.16 $g{\cdot}g^{-1}{\cdot}day^{-1}$ for carnation, 0.35 $g{\cdot}g^{-1}{\cdot}day^{-1}$ for chrysanthemum, 0.52 $g{\cdot}g^{-1}{\cdot}day^{-1}$ for rose, and 0.62 $g{\cdot}g^{-1}{\cdot}day^{-1}$ for snapdragon. In the absence of salts, maximum fresh weight increase in relation to the initial value varied from 15% in carnation to 33% in chrysanthemum. Addition of KCl or $CaCl_2$ to the vase solution depressed the uptake rate but prolonged the period of increasing fresh weight and delayed the fresh weight decline. Significant positive linear relationships were found between the solubility of stem pectins and the rate of fresh weight increase in the four cut flowers and between the solution uptake rate and the amount of CDTA-soluble pectins present in the petals. These results provide correlative evidence for a role of pectins in the water relations of cut flowers.

Keywords

References

  1. Ahmed, A.E.R. and J.M. Labavitch. 1977. A simplified method for accurate determination of cell wall uronide content. J. Food Biochem. 1:361-365.
  2. Aloni, R., D.E. Enstone, and C.A. Peterson. 1998. Indirect evidence for bulk water flow in root cortical cell walls of three dicotyledonous species. Planta 207:1-7. https://doi.org/10.1007/s004250050449
  3. Blumenkrantz, N. and G. Asboe-Hansen. 1973. New method for quantitative determination of uronic acids. Anal. Biochem. 54:484-489. https://doi.org/10.1016/0003-2697(73)90377-1
  4. Brett, C.T. and K.W. Waldron. 1996. Physiology and Biochemistry of Plant Cell Walls. 2nd ed. Chapman & Hall, London.
  5. Canny, M.J. 1995. Apoplastic water and solute movement: new rules for an old space. Ann. Rev. Plant Physiol. Plant Mol. Biol. 46:215-236. https://doi.org/10.1146/annurev.pp.46.060195.001243
  6. De Vetten, N.C. and D.J. Huber. 1990. Cell wall changes during the expansion and senescence of carnation (Dianthus caryophyllus L.) petals. Physiol. Plant. 78:447-454. https://doi.org/10.1111/j.1399-3054.1990.tb09062.x
  7. Doi, M., Y. Hu, and H. Imanishi. 2000. Water relations of cut roses as influenced by vapor pressure deficits and temperatures. J. Japan. Soc. Hort. Sci. 69:584-589. https://doi.org/10.2503/jjshs.69.584
  8. Gasco, A., A. Nardini, E. Gortan and S. Salleo. 2006. Ion-mediated increase in the hydraulic conductivity of laurel stems: role of pits and consequences for the impact of cavitation on water transport. Plant, Cell Environ. 29:1946-1955. https://doi.org/10.1111/j.1365-3040.2006.01570.x
  9. Halevy, A.H. and S. Mayak. 1981. Senescence and postharvest physiology of cut flowers -Part 2. Hortic. Rev. 3:59-143.
  10. Heyes, J.A. and C.J. Clark. 2003. Magnetic resonance imaging of water movement through asparagus. Functional Plant Biol. 30:1089-1095. https://doi.org/10.1071/FP03096
  11. Mayak, S. and A.H. Halevy. 1980. Flower senescence, p. 131-156. In: Thimann, K.W. (ed.). Senescence in Petals. CRC Press, Boca Raton, FL.
  12. Muller, S., W.G. Jardine, B.W. Evans, R.J. Vietor, C.E. Snape, and M.C. Jarvis. 2003. Cell wall composition of vascular and parenchyma tissues in broccoli stems. J. Sci. Food Agric. 83:1289-1292. https://doi.org/10.1002/jsfa.1441
  13. O'Donoghue, E.M., S.D. Somerfield, and J.A. Heyes. 2002. Organization of cell walls in Sandersonia aurantiaca floral tissue. J. Exp. Bot. 53:513-523. https://doi.org/10.1093/jexbot/53.368.513
  14. Pinheiro, S.C.F. and D.P.F. Almeida. 2008. Modulation of tomato pericarp firmness through pH and calcium: Implications for the texture of fresh-cut fruit. Postharvest Biol. Technol. 47:119-125. https://doi.org/10.1016/j.postharvbio.2007.06.002
  15. Redgwell, R.J., E. MacRae, I. Hallett, M. Fischer, J. Perry, and R. Harker. 1997. In vivo and in vitro swelling of cell walls during fruit ripening. Planta 203:162-173. https://doi.org/10.1007/s004250050178
  16. Thakur, B.R., R.K. Singh, and A.K. Handa. 1997. Chemistry and uses of pectin - a review. Critical Rev. Food Sci. Nutr. 37:47-73. https://doi.org/10.1080/10408399709527767
  17. Tyree, M.T. 1997. The Cohesion-Tension theory of sap ascent: current controversies. J. Exp. Bot. 48:1753-1765.
  18. van Doorn, W. and R.R.J. Perik. 1990. Hydroxyquinoline citrate and low pH prevent vascular blockage in stems of cut rose flowers by reducing the number of bacteria. J. Amer. Soc. Hort. Sci. 115:979-981.
  19. van Doorn, W.G. 1994. Vascular occlusion in cut flowering rose stems exposed to air: role of xylem wall pathway for water. Physiol. Plant. 90:45-50. https://doi.org/10.1111/j.1399-3054.1994.tb02190.x
  20. van Doorn, W.G. 1997. Water relations of cut flowers. Hort. Rev. 18: 1-85.
  21. van Doorn, W.G. and U. van Meeteren. 2003. Flower opening and closure: a review. J. Exp. Bot. 54:1801-1812. https://doi.org/10.1093/jxb/erg213
  22. van Ieperen, W. 2007. Ion-mediated changes of xylem hydraulic resistance in planta: fact or fiction? Trends Plant Sci. 12:137-142. https://doi.org/10.1016/j.tplants.2007.03.001
  23. van Ieperen, W., U. van Meeteren, and H. van Gelder. 2000. Fluid ionic composition influences hydraulic conductance of xylem conduits. J. Exp. Bot. 51:769-776. https://doi.org/10.1093/jexbot/51.345.769
  24. van Ieperen, W., U. van Meeteren, and J. Nijsse. 2002. Embolism repair in cut flower stems: a physical approach. Postharvest Biol. Technol. 25:1-14. https://doi.org/10.1016/S0925-5214(01)00161-2
  25. van Meeteren, U., H. van Gelder, and W. van Ieperen. 1999. Reconsideration of the use of deionized water as vase water in postharvest experiments on cut flowers. Postharvest Biol. Technol. 17:175-187. https://doi.org/10.1016/S0925-5214(99)00050-2
  26. Zimmermann, U., H.J. Wagner, H. Schneider, M. Rokitta, A. Haase, and F.W. Bentrup. 2000. Water ascent in plants: the ongoing debate. Trends Plant Sci. 5:145-146. https://doi.org/10.1016/S1360-1385(00)01581-8
  27. Zwieniecki M.A., P.J. Melcher, and N.H. Holbrook. 2001. Hydrogel control of xylem hydraulic resistance in plants. Science 291:1059-1062. https://doi.org/10.1126/science.1057175