DOI QR코드

DOI QR Code

Comparisons of occlusal force according to occlusal relationship, skeletal pattern, age and gender in Koreans

한국인에서의 부정교합 여부와 골격형태, 연령, 성별에 따른 교합력의 비교

  • Yoon, Hye-Rim (Department of Orthodontics, Gangnam Severance Dental Hospital, College of Dentistry, Oral Science Research Institute, The Institute of Craniofacial Deformity, Yonsei University) ;
  • Choi, Yoon-Jeong (Department of Orthodontics, Gangnam Severance Dental Hospital, College of Dentistry, Oral Science Research Institute, The Institute of Craniofacial Deformity, Yonsei University) ;
  • Kim, Kyung-Ho (Department of Orthodontics, Gangnam Severance Dental Hospital, College of Dentistry, Oral Science Research Institute, The Institute of Craniofacial Deformity, Yonsei University) ;
  • Chung, Choo-Ryung (Department of Orthodontics, Gangnam Severance Dental Hospital, College of Dentistry, Oral Science Research Institute, The Institute of Craniofacial Deformity, Yonsei University)
  • 윤혜림 (강남세브란스병원 치과교정과, 연세대학교 치과대학 교정학교실, 구강과학연구소, 두개안면기형연구소) ;
  • 최윤정 (강남세브란스병원 치과교정과, 연세대학교 치과대학 교정학교실, 구강과학연구소, 두개안면기형연구소) ;
  • 김경호 (강남세브란스병원 치과교정과, 연세대학교 치과대학 교정학교실, 구강과학연구소, 두개안면기형연구소) ;
  • 정주령 (강남세브란스병원 치과교정과, 연세대학교 치과대학 교정학교실, 구강과학연구소, 두개안면기형연구소)
  • Received : 2010.05.22
  • Accepted : 2010.07.19
  • Published : 2010.10.30

Abstract

Objective: The aim of this study was to evaluate the occlusal force and contact area and to find its associating factors in Koreans. Methods: Occlusal force and contact area in maximum intercuspation were measured using the Dental $Prescale^{(R)}$ system in 651 subjects (15 with normal occlusion, 636 with various malocclusions divided into subgroups according to the skeletal pattern, Angle's molar relationship, age and gender). Results: Occlusal force of the normal occlusion group ($744.5{\pm}262.6N$) was significantly higher than those of the malocclusion group ($439.0{\pm}229.9N$, $p$ < 0.05). Occlusal force was similar regardless of differences in ANB angle or Angle's molar classification, however the increase in vertical dimension significantly reduced occlusal force ($p$ < 0.05). Conclusions: Occlusal force was significantly lower in the malocclusion group compared to the normal occlusion group, and in females compared to males, but it was not affected by age, antero-posterior skeletal pattern or molar classification. Although a hyperdivergent facial pattern indicated lower occlusal force compared to a hypodivergent facial pattern, the differences in skeletal pattern were not the primary cause of its decrease, but a secondary result induced by the differences in occlusal contact area according to the facial pattern.

본 연구는 한국인 정상교합자와 부정교합자 사이의 교합력의 크기와 교합 시의 접촉 면적의 차이 및 골격 형태와 교합 관계, 연령, 성별이 교합력의 크기에 영향을 미치는지 알아보기 위해 시행되었다. 정상교합자 15명, 부정교합자 636명에서 일회용 pressure sensitive sheet (Dental $Prescale^{(R)}$ 50H, typeR, Fuji Film Corp., Tokyo, Japan)를 자연 두부위에서 최대 근력으로 교합하도록 한 후, CCD camera ($Occluzer^{(R)}$ FPD 707, Fuji Film Corp., Tokyo, Japan)로 판독하여 교합력의 크기 및 접촉 면적을 측정하였다. 정상교합자군의 교합력의 크기는 $744.5{\pm}262.6N$, 접촉면적은 $24.2{\pm}8.2mm^2$으로, 부정교합자군의 $439.0{\pm}229.9N$, $12.4{\pm}10.7mm^2$에 비해 교합력의 크기와 접촉 면적이 유의하게 컸다 ($p$ < 0.05). 부정교합자군의 경우 연령에 따른 교합력의 차이는 없었으나, 남자가 여자에 비해 큰 교합력을 가지고 있었다 ($p$ < 0.05). 악안면의 전후방적인 골격 형태를 나타내는 ANB 및 골격성 1급 부정교합에서의 구치부의 Angle 분류는 교합력에 유의한 차이를 나타내지 않았으나, 수직적인 골격 형태를 구분하는 mandibular plane angle, gonial angle이 큰 경우, 교합력이 유의하게 작았다 ($p$ < 0.05). 하지만, 교합력의 크기와 접촉 면적간에는 높은 상관관계가 존재하는 점과 접촉 면적을 통제한 상태에서의 골격 형태와 교합력의 크기 사이에는 유의할 만한 상관관계가 없는 점을 고려한다면 수직적인 골격 형태가 직접적으로 교합력에 영향을 주기보다는 수직적인 골격 형태에 따른 접촉 면적의 감소가 교합력 저하에 관여한다고 판단된다.

Keywords

References

  1. Throckmorton GS, Finn RA, Bell WH. Biomechanics of differences in lower facial height. Am J Orthod 1980;77:410-20. https://doi.org/10.1016/0002-9416(80)90106-2
  2. Rios HF, Ma D, Xie Y, Giannobile WV, Bonewald LF, Conway SJ, et al. Periostin is essential for the integrity and function of the periodontal ligament during occlusal loading in mice. J Periodontol 2008;79:1480-90. https://doi.org/10.1902/jop.2008.070624
  3. Proffit WR, Fields HW, Nixon WL. Occlusal forces in normal- and long-faced adults. J Dent Res 1983;62:566-70. https://doi.org/10.1177/00220345830620051201
  4. Ringqvist M. Isometric bite force and its relation to dimensions of the facial skeleton. Acta Odontol Scand 1973;31:35-42. https://doi.org/10.3109/00016357309004611
  5. Kurusu A, Horiuchi M, Soma K. Relationship between occlusal force and mandibular condyle morphology. Evaluated by limited cone-beam computed tomography. Angle Orthod 2009;79:1063-9. https://doi.org/10.2319/120908-620R.1
  6. Terespolsky MS, Brin I, Harari D, Steigman S. The effect of functional occlusal forces on orthodontic tooth movement and tissue recovery in rats. Am J Orthod Dentofacial Orthop 2002;121:620-8. https://doi.org/10.1067/mod.2002.123342
  7. Keles A, Tokmak EC, Erverdi N, Nanda R. Effect of varying the force direction on maxillary orthopedic protraction. Angle Orthod 2002;72:387-96.
  8. Melsen B, Bosch C. Different approaches to anchorage: a survey and an evaluation. Angle Orthod 1997;67:23-30.
  9. Diedrich P. Different orthodontic anchorage systems. A critical examination. Fortschr Kieferorthop 1993;54:156-71. https://doi.org/10.1007/BF02171574
  10. Brudevold F. A basic study of the chewing forces of a denture wearer. J Am Dent Assoc 1951;43:45-51. https://doi.org/10.14219/jada.archive.1951.0163
  11. Yurkstas A, Curby WA. Force analysis of prosthetic appliances during function. J Prosthet Dent 1953;3:82-7. https://doi.org/10.1016/0022-3913(53)90039-0
  12. Anderson DJ. Measurement of stress in mastication. II. J Dent Res 1956;35:671-3. https://doi.org/10.1177/00220345560350050301
  13. Linderholm H, Wennstrom A. Isometric bite force and its relation to general muscle forge and body build. Acta Odontol Scand 1970;28:679-89. https://doi.org/10.3109/00016357009058590
  14. Floystrand F, Kleven E, Oilo G. A novel miniature bite force recorder and its clinical application. Acta Odontol Scand 1982;40:209-14. https://doi.org/10.3109/00016358209019814
  15. Gibbs CH, Mahan PE, Lundeen HC, Brehnan K, Walsh EK, Holbrook WB. Occlusal forces during chewing and swallowing as measured by sound transmission. J Prosthet Dent 1981;46:443-9. https://doi.org/10.1016/0022-3913(81)90455-8
  16. Harada K, Watanabe M, Ohkura K, Enomoto S. Measure of bite force and occlusal contact area before and after bilateral sagittal ramus osteotomy of the mandible using a new pressure-sensitive device: a preliminary report. J Oral Maxillofac Surg 2000;58:370-3. https://doi.org/10.1016/S0278-2391(00)90913-3
  17. Hirasawa T, Hirano S, Sugita H, Jibiki H, Mori R. Dental application of pressure measuring sheet (author's transl). Shika Rikogaku Zasshi 1978;19:298-300.
  18. Iwase M, Sugimori M, Kurachi Y, Nagumo M. Changes in bite force and occlusal contacts in patients treated for mandibular prognathism by orthognathic surgery. J Oral Maxillofac Surg 1998;56:850-5. https://doi.org/10.1016/S0278-2391(98)90013-1
  19. Carlsson GE. Bite force and chewing efficiency. Front Oral Physiol 1974;1:265-92.
  20. Jenkins GN. The physiology of the mouth. Oxford: Blackwell Scientific Publications; 1966.
  21. Kim KH, Choy KC, Kim HG, Park KH. Cephalomertic norms of the hard tissues of Korean for orthognathic surgery. J Korean Assoc Oral Maxillofac Surg 2001;27:221-30.
  22. Bachus KN, DeMarco AL, Judd KT, Horwitz DS, Brodke DS. Measuring contact area, force, and pressure for bioengineering applications: using Fuji Film and TekScan systems. Med Eng Phys 2006;28:483-8. https://doi.org/10.1016/j.medengphy.2005.07.022
  23. Kitafusa Y. Application of "prescale" as an aid to clinical diagnosis in orthodontics. Bull Tokyo Dent Coll 2004;45:99-108. https://doi.org/10.2209/tdcpublication.45.99
  24. Ingervall B, Minder C. Correlation between maximum bite force and facial morphology in children. Angle Orthod 1997;67:415-22.
  25. Bakke M. Mandibular elevator muscles: physiology, action, and effect of dental occlusion. Scand J Dent Res 1993;101:314-31.
  26. Helkimo E, Carlsson GE, Helkimo M. Bite force and state of dentition. Acta Odontol Scand 1977;35:297-303. https://doi.org/10.3109/00016357709064128
  27. Braun S, Bantleon HP, Hnat WP, Freudenthaler JW, Marcotte MR, Johnson BE. A study of bite force, part 1: Relationship to various physical characteristics. Angle Orthod 1995;65:367-72.
  28. Linke PG, Dette KE, Hoppmann I. Die Entwicklung der Kaukraft bei Kindern in Abhangigkeit von Geschlecht, Alter, Korpergrosse und Gewicht. Arztl Judendk 1971;62:338-49.
  29. Finn RA. Relationship of vertical maxillary dysplasias, bite force and integrated EMG. In: Abstracts of conference on craniofacial research. Ann Arbor, Michigan: University of Michigan Center of Human Growth and Development; 1978.
  30. Choi WC, Kim TW. Relationship between maximum bite force and facial skeletal pattern. Korean J Orthod 2003;33:437-51.
  31. Denzinger FW. A study of the correlation of incisal biting force and cephalometric patterns. Indianapolis, Indiana: Indiana University School of Dentistry; 1971.
  32. Kwon HK, Yoo JH, Kwon YS, Kim BI. Comparison of bite force with dental prescale and unilateral bite force recorder in healthy subjects. J Korean Acad Prosthodont 2006;44:103-11.

Cited by

  1. Add-picture 방법을 이용한 교합접촉점 분석 vol.29, pp.1, 2010, https://doi.org/10.14368/jdras.2013.29.1.045
  2. 20대 일부 성인의 교합력 관련 요인 vol.14, pp.3, 2014, https://doi.org/10.13065/jksdh.2014.14.03.303
  3. 하악 제1대구치 상실 시 인접 및 대합 치아들의 이동양상에 따른 교합력 변화: 스트레인게이지를 이용한 비교 연구 vol.32, pp.1, 2010, https://doi.org/10.14368/jdras.2016.32.1.47
  4. Changes in occlusal function after extraction of premolars: 2-year follow-up vol.87, pp.5, 2010, https://doi.org/10.2319/112116-836.1
  5. 부정교합 종류에 따른 교정치료의 인식과 구강건강영향지수(OHIP-14) vol.18, pp.12, 2010, https://doi.org/10.5762/kais.2017.18.12.434
  6. Comparison of the occlusal contact area of virtual models and actual models: a comparative in vitro study on Class I and Class II malocclusion models vol.18, pp.None, 2010, https://doi.org/10.1186/s12903-018-0566-7
  7. Camouflage treatment for skeletal Class III patient with facial asymmetry using customized bracket based on CAD/CAM virtual orthodontic system: vol.90, pp.4, 2020, https://doi.org/10.2319/102318-768.1
  8. Survival and prognostic factors of managing cracked teeth with reversible pulpitis: A 1‐ to 4‐year prospective cohort study vol.54, pp.10, 2021, https://doi.org/10.1111/iej.13597
  9. Association between masticatory muscle activity and oral conditions in young female college students vol.54, pp.4, 2021, https://doi.org/10.5115/acb.21.107