A numerical study of the air fuel ratio effect on the combustion characteristics in a MILD combustor

공연비 변화가 MILD 연소 특성에 미치는 영향에 관한 해석적 연구

  • Ha, Ji-Soo (Energy.Environmental Science Department Keimyung University) ;
  • Kim, Tae-Kwon (Mechanical and Automotive Engineering Department, Keimyung University) ;
  • Shim, Sung-Hoon (Korea Institute of Machinery & Materials)
  • 하지수 (계명대학교 에너지환경과학과) ;
  • 김태권 (계명대학교 기계자동차공학부) ;
  • 심성훈 (한국기계연구원)
  • Received : 2010.04.14
  • Accepted : 2010.06.04
  • Published : 2010.06.30

Abstract

A numerical analysis of reactive flow in a MILD(Moderate and Intense Low oxygen Dilution) combustor is accomplished to elucidate the characteristics of combustion phenomena in the furnace with the variation of air fuel ratio. For the smaller magnitude of air injection velocity(10 m/s), the air flow could not penetrate toward upper part of furnace. On the other hand, the air flow suppresses the fuel flow for the case of air injection velocity 30 m/s. The air velocity 18 m/s is corresponding to the stoichiometric air flow velocity, and for that case, the air flows to relatively more upper part of the furnace when compared with the case of air injection velocity 10 m/s. The reaction zone is produced with the previous flow pattern, so that the reaction zone of the air injection velocity 10 m/s is biased to the air nozzle side and for the case of air injection velocity 30 m/s, the reaction zone is inclined to the fuel nozzle side. For the cases with the air injection velocities 16, 18, 20 m/s, the reaction zone is nearly located at the center between air nozzle and fuel nozzle. The maximum temperatures and NOx concentrations for the cases of air injection velocity 16, 18, 20 m/s are lower than the cases with air injection velocity 10, 30 m/s. From the present study, the stoichiometric air fuel ratio is considered as the most optimal operating condition for the NOx reduction.

연소과정 중에 발생하는 질소산화물을 저감하는 기술인 MILD 연소에 대하여 공연비를 변화시키면서 나타나는 연소 특성을 수치해석을 통하여 연구하였다. 작은 크기의 공기분출속도(10 m/s)에서는 공기가 연소로 내 상부영역까지 침투하지 못한다. 반면에 공기분출속도가 30 m/s인 경우에는 공기유동이 연료유동을 억제하고 상부영역까지 흘러간다. 이론공기량에 해당하는 공기분출속도 18 m/s에서는 10 m/s 보다 상대적으로 상부영역까지 침투하였다. 이러한 유동 양상으로 공기분출속도가 작은 10 m/s에서는 연소반응대가 공기노즐 측에 치우쳐 나타나고 30 m/s에서는 연료노즐 측에 형성되었다. 공기분출속도 16, 18, 20 m/s에서는 공기노즐과 연료노즐 중간 영역에서 연소반응대가 형성되었다. 연소로 내 최대온도와 NOx 생성은 공기분출속도가 10 m/s, 30 m/s인 경우 보다 이론공기량이거나 이에 가까운 16, 18, 20 m/s에서 낮게 나타났다. 본 연구로부터 MILD 연소로에서 이론공기량 조건이 NOx를 저감하는 최적의 조건이라는 것을 밝혔다.

Keywords

References

  1. Wuuning J. A., and Wunning, J. G., "Flameless oxidation to reduce thermal NO-formation", Prog. Energy Combust.Sci., 23, 81-97(1997). https://doi.org/10.1016/S0360-1285(97)00006-3
  2. Katsuki, M., Hasegawa, T., "The science of technology of combustion in highly preheated air", 27 Symp (Int) Combustion, pp. 3135-3146(1998).
  3. Cavaliere, A., De Joannon, M., and Ragucci, R., "Mild combustion of high temperature reactants", 2nd International Symposium on High Temperature Air Combustion(1999).
  4. plessing, T., Peters, N., and Wunning, J. G., "Laseroptical investigation of highly preheated combustion with strong exxxhaust gas recirculation", 27 Symp (Int) Combustion, pp. 3197-3204(1998).
  5. Frazan, H., Maringo, G. J., Riggs, J. D., Yagiela, A. S. and Newell, R. J., "Reburning with Powder River Basin Coal to Achieve $SO_2$ an NOx Compliance", Proc. of the Power - Gen Sixth International Conference, Dallas, pp. 175-187(1993).
  6. Lee, C. Y. and Baek, S. W., "Effects of Hybrid Reburning/SNCR Strategy on NOx/CO Reduction and Thermal Characteristics in Oxygen-Enriched LPG Flame", Combust. Sci. and Technol., 179(8), 1649-1666(2007). https://doi.org/10.1080/00102200701259734
  7. Launder, B. E., and Spalding, D. B., "The Numerical Computation of Turbulent Flows. Computer methods in Applied Mechanics and Engineering", pp. 269-289(1974).
  8. Magnussen, B. F., and Hjertager, B. H., "On mathematical model of turbulent combustion with special emphasis on soot formation and combustion", In 16th Symp. on Combustion(1976).
  9. Liu, F., Becker, H. A., and Bindar, Y., "A comparative modeling in gas-fired furnaces using the Simple Grey Gas and the Weighted-Sum-of-Grey-Gases Models", Int. J. Heat Mass Transfer, 41, 3357-3371(1998). https://doi.org/10.1016/S0017-9310(98)00098-2
  10. Patankar, S. V., "Numerical Heat Transfer and Fluid Flow", 126-131(1980).
  11. Hanson, R. K., and Salimian, "Survey of rate constants in H/N/O systems", Combustion Chemistry, 361(1984).