Removal of Fluoride Using Thermally Treated Activated Alumina

고온 처리된 활성알루미나를 이용한 불소 제거

  • Park, Seong-Jik (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Kim, Jae-Hyeon (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Lee, Chang-Gu (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Park, Jeong-Ann (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Choi, Nag-Choul (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Kim, Song-Bae (Department of Rural Systems Engineering, Research Institute for Agriculture and Life Sciences, Seoul National University)
  • 박성직 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 김재현 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 이창구 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 박정안 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 최낙철 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 김성배 (서울대학교 지역시스템공학과, 농업생명과학연구원)
  • Received : 2010.09.07
  • Accepted : 2010.10.29
  • Published : 2010.10.31

Abstract

In this study, sorption characteristics of thermally treated activated alumina (AA) for fluoride were investigated. Sorption experiments have been conducted in equilibrium and kinetic batch conditions. Also, effects of solution pH and anions on fluoride removal have been observed. The properties of thermally treated ( $700^{\circ}C$) activated alumina (AA700) and untreated activated alumina (UAA) were compared using field-emission scanning electron microscope, energy-dispersive spectrometry, X-ray diffractometer (XRD) analysis, and Brunauer-Emmett-Teller (BET) analysis. From the experiments using AA thermally treated at different temperatures (100, 300, 500, $700^{\circ}C$), it was found that at high fluoride concentrations (50, 100, 200 mg/L) the sorption capacity of thermally treated AA increased with increasing thermal treatment temperature. At an initial fluoride concentration of 200 mg/L, the sorption capacity of AA700 was 3.67 times greater than that of UAA. The BET analysis showed that the specific surface area of UAA was about 2 times larger than that of AA700. The XRD analysis indicated that UAA was composed of both boehmite (AlOOH) and bayerite ($Al(OH)_3$) while AA700 was $Al_2O_3$. The reason that fluoride sorption capacity of AA700 increased despite of decrease in specific surface area compared to UAA could be attributed to the change of crystal structure. The kinetic sorption test showed that fluoride sorption to AA700 arrived at equilibrium after 24 h. The equilibrium test demonstrated that the maximum sorption capacity of AA700 was 5.70 mg/g. Additional batch experiments indicated that fluoride sorption to AA700 was the highest at pH 7, decreasing at both acidic and basic solution pHs. Also, fluoride sorption to AA700 decreased in the presence of anions such as phosphate, nitrate, and carbonate. This study demonstrated that thermal treatment of AA at high temperature could increase its sorption capacity for fluoride.

본 연구에서는 열처리한 활성알루미나의 불소흡착특성을 분석하였다. 이를 위하여 평형 및 동적 흡착실험을 수행하였고, 용액 pH의 영향과 음이온의 존재에 따른 흡착 특성을 살펴보았다. 또한, 열처리한 활성알루미나의 여재특성을 분석하기 위하여, 전계방출주사현미경(field-emission scanning electron microscope), energy-dispersive spectrometry, X선 회절(X-ray Diffractometer, XRD)분석, 그리고 Brunauer-Emmett-Teller (BET) 비표면적 분석을 수행하였다. 다양한 온도(100, 300, 500, $700^{\circ}C$) 에서 열처리한 활성알루미나의 흡착능을 비교한 결과, 높은 불소 농도(50, 100, 200 mg/L)에서 열처리 온도가 높아짐에 따라서 활성알루미나의 흡착량이 증가하는 것으로 나타났다. 특히, 불소 초기농도 200 mg/L에서는 $700^{\circ}C$에서 고온처리한 활성알루미나(AA700)의 흡착량이 열처리하지 않은 활성알루미나(UAA)보다 3.67배 큰 것으로 나타났다. AA700과 UAA의 BET분석 결과, UAA의 단위질량당 비표면적이 AA700의 비표면적보다 약 2배 큼을 알 수 있었다. XRD 분석결과에 의하면, AA700의 결정구조는 Al2O3인 반면, UAA는 boehmite (AlOOH)와 bayerite ($Al(OH)_3$)가 혼합된 형태로 구성되어 있었다. 열처리에 의하여 비표면적이 감소하였음에도 불구하고, AA700의 불소 흡착능이 UAA에 비하여 증가한 이유는 결정구조의 변화 때문으로 판단된다. AA700의 동역학적 흡착실험결과, 불소의 흡착은 24 h 경과 후에 평형에 도달하였다. 또한, 평형 흡착실험결과에 의하면, 여재 당 불소의 최대 흡착량은 5.70 mg/g으로 나타났다. 용액 pH의 영향을 분석한 결과, pH 7에서 불소 흡착이 가장 높았으며, 산성과 알칼리성에서는 불소 흡착이 감소하는 것으로 나타났다. 음이온의 영향을 분석한 결과, 인산염, 질산염, 중탄산염은 불소 흡착을 감소시키는 것으로 나타났다. 본 연구에 의하면, 상용화된 활성알루미나를 이용하여 불소를 제거할 경우, 고온처리를 통하여 활성알루미나의 흡착능을 증가시킬 수 있을 것으로 판단된다.

Keywords

References

  1. Ayoob, S. and Gupta, A. K., "Fluoride in drinking water: A review on the status and stress effects," Crit. Rev. Environ. Sci. Technol., 35, 433-487(2006).
  2. Kim, K. and Jeong, Y. G., "Factors influencing natural occurrence of fluoride-rich groundwaters: A case study in the southeastern part of the Korean Peninsula," Chemosphere, 58, 1399-1408(2005). https://doi.org/10.1016/j.chemosphere.2004.10.002
  3. Eskandarpour, A., Onyango, M. S., Ochieng, A. and Asai, S., "Removal of fluoride ions from aqueous solution at low pH using schwertmannite," J. Hazard. Mater., 152, 571-579 (2008). https://doi.org/10.1016/j.jhazmat.2007.07.020
  4. Karabelas, A. J., Yiantsios, S. G., Metaxiotou, Z., Andritsos, N., Akiskalos, A., Vlachopoulos, G. and Stavroulias, S., "Water and materials recovery from fertilizer industry acidic effluents by membrane process," Desalination, 138, 93-102(2001). https://doi.org/10.1016/S0011-9164(01)00250-8
  5. Ndiaye, P. I., Moulin, P., Dominguez, L., Millet, J. C. and Charbit, F., "Removal of fluoride from electronic industrial effluent by RO membrane separation," Desalination, 173, 25-32(2005). https://doi.org/10.1016/j.desal.2004.07.042
  6. Huang, C. J. and Liu, J. C., "Preciptation flotation of fluoridecontaining wastewater from semi-conductor namufacture," Water Res., 33, 3403-3412(1999). https://doi.org/10.1016/S0043-1354(99)00065-2
  7. Hu, C. Y., Lo, S. L., Kuan, W. H. and lee, Y. D., "Removal of fluoride from semiconductor wastewater by electrocoagulation- flotation," Water Res., 39, 895-901(2005). https://doi.org/10.1016/j.watres.2004.11.034
  8. Shen, F., Chen, X., Gao, P. and Chen, G., "Electrochemical removal of fluoride ions from industrial wastewater," Chem. Eng. Sci., 58, 987-993(2003). https://doi.org/10.1016/S0009-2509(02)00639-5
  9. Aldaco, R., Irabien, A. and Luis, P., "Fluidized bed reactor for fluoride removal," Chem. Eng. J., 107, 113-117(2005). https://doi.org/10.1016/j.cej.2004.12.017
  10. Ruixia, L., Jinlong, G. and Hongxiao, T., "Adsorption of fluoride, phosphate, and arsenate ions on a new type of ion exchange fiber," J. Colloid Interface Sci., 248, 268-274 (2002). https://doi.org/10.1006/jcis.2002.8260
  11. Vaaramaa, K. and Lehto, J., "Removal of metals and anions from drinking water by ion exchange," Desalination, 155, 157-170(2003). https://doi.org/10.1016/S0011-9164(03)00293-5
  12. Hichour, M., Persin, F., Sandeaux, J. and Gavach, C., "Fluoride removal from water by Donnan dialysis," Sep. Purif. Technol., 18, 1-11(2000).
  13. Ruiz, T., Persin, F., Hichour, M. and Sandeaux, J., "Modelisation of fluoride removal in Donnan dialysis," J. Membr. Sci., 212, 113-121(2003). https://doi.org/10.1016/S0376-7388(02)00489-1
  14. Amor, Z., Bariou, B., Mameri, N., Toky, M., Nicolas, S. and Elmidaoui, S., "Fluoride removal from brackish water by electrodialysis," Desalination, 133, 215-223(2001). https://doi.org/10.1016/S0011-9164(01)00102-3
  15. Yang, M., Hashimoto, T., Hoshi, N. and Myoga, H., "Fluoride removal in a fixed bed packed with granular calcite," Water Res., 33, 3395-3402(1999). https://doi.org/10.1016/S0043-1354(99)00052-4
  16. Haron, M. J. and Yunus W., "Removal of fluoride ion from aqueous solution by a cerium-poly (hydroxamic acid) resin complex," J. Environ. Sci. Health. A, 36, 727-734(2001). https://doi.org/10.1081/ESE-100103756
  17. Zhou, Y., Yu, C. and Shan, Y., "Adsorption of fluoride from aqueous solution on $La^{3+}$-impregnated cross-linked gelatin," Sep. Purif. Technol., 36, 89-94(2004). https://doi.org/10.1016/S1383-5866(03)00167-9
  18. Ghorai, S. and Pant, K. K., "Investigations on the column performance of fluoride adsorption by activated alumina in a fixed-bed," Chem. Eng. J., 98, 165-173(2004). https://doi.org/10.1016/j.cej.2003.07.003
  19. Ramos, R. L., Turrubiartes, J. O. and Castillo, M. A. S., "Adsorption of fluoride from aqueous solution on aluminium-impregnated carbon," Carbon, 37, 609-617(1999). https://doi.org/10.1016/S0008-6223(98)00231-0
  20. Srimurali, M., Pragathi, A. and Karthikeyan, J., "A study on removal of fluorides from drinking water by adsorption onto low-cost materials," Environ. Pollut., 99, 285-289(1998). https://doi.org/10.1016/S0269-7491(97)00129-2
  21. Wang, Y. and Reardon, E. J., "Activation and regeneration of a soil sorbent for defluoridation of drinking water," Appl. Geochem., 16, 531-539(2001).
  22. Fan, X., Parker, D. J. and Smith, M. D., "Adsorption kinetics of fluoride on low cost materials," Water Res., 37, 4929-4937(2003). https://doi.org/10.1016/j.watres.2003.08.014
  23. Chaturvedi, A. K., Yadava, K. P., Pathak, K. C. and Singh, V. N., "Defluoridation of water by adsorption by adsorption on fly ash," Water Air Soil pollut., 49, 51-61(1990). https://doi.org/10.1007/BF00279509
  24. Lai, Y. D. and Liu, J. C., "Fluoride removal from water with spent catalyst," Sep. Sci. Technol., 31, 2791-2803(1996). https://doi.org/10.1080/01496399608000827
  25. 이진숙, 김동수, "폐굴껍질을 흡착제로 한 불소폐수 처리 특성에 관한 연구," 한국물환경학회지, 23, 222-227(2007).
  26. Ku, Y. and Chiou, H.-M., "The adsorption of fluoride ion from aqueous solution by activated alumina," Water Air Soil Pollut., 133, 349-360(2002). https://doi.org/10.1023/A:1012929900113
  27. Tang, Y., Guan, X., Su, T., Gao, N. and Wang, J., "Fluoride adsorption onto activated alumina: Modeling the effects of pH and some competing ions," Colloid Surf. A-Physicochem. Eng. Asp., 337, 33-38(2009). https://doi.org/10.1016/j.colsurfa.2008.11.027
  28. Ho, Y. S. and McKay, G., "The sorption of lead (II) ions on peat," Water Res., 33, 578-584(1999). https://doi.org/10.1016/S0043-1354(98)00207-3
  29. Mathialagan, T. and Viraraghavan, T., "Adsorption of cadmium from aqueous solutions by vermiculite," Sep. Sci. Technol., 38, 57(2003). https://doi.org/10.1081/SS-120016698
  30. Weber Jr., W. J. and Morris, J. C., "Kinetics of adsorption on carbon from solution," J. Sanit. Eng. Div., 89, 31-59 (1963).
  31. Gerente, C., Lee, V. K. C., Le Cloirec, P. and McKay, G., "Application of chitosan for the removal of metals from wastewaters by adsorption-mechanisms and models review," Crit. Rev. Environ. Sci. Technol., 37, 41-127(2007). https://doi.org/10.1080/10643380600729089
  32. 정우식, 지민규, 이상훈, Eva Kumar, Amit Bhatnagar, 김선준, 전병훈, "GFH (Granular Ferric Hydroxide)를 이용한 불소 흡착연구," 한국지구시스템공학회지, 45, 441-447(2008).
  33. Viswanathan, N., Sundaram, C. S. and Meenaksh, S., "Removal of fluoride from aqueous solution using protonated chitosan beads," J. Hazard. Mater., 161, 423-430(2009). https://doi.org/10.1016/j.jhazmat.2008.03.115
  34. Han, Y. U., Park, S. J., Lee, C. G., Park, J. A., Chol, N. C. and Kim, S. B., "Phosphate removal from aqueous solution by aluminum (Hydr)oxide-coated sand," Environ. Eng. Res., 14, 164-169(2009). https://doi.org/10.4491/eer.2009.14.3.164