Bacterial Diversity and Distribution of Cultivable Bacteria Isolated from Dokdo Island

독도 주변의 해수에서 분리한 세균의 다양성과 군집구조 분석

  • Sung, Hye-Ri (School of Life Sciences and Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University) ;
  • Ghim, Sa-Youl (School of Life Sciences and Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University)
  • 성혜리 (경북대학교 생명과학부, 경북대학교 울릉도.독도연구소) ;
  • 김사열 (경북대학교 생명과학부, 경북대학교 울릉도.독도연구소)
  • Received : 2010.06.09
  • Accepted : 2010.08.24
  • Published : 2010.09.28

Abstract

One hundred sixty three strains showing different colony morphological characteristics on different concentration of marine agar (MA) plates were isolated from ambient seawater near Dokdo island. Bacterial diversity and distributions were studied by phylogenetic analysis of the partial 16S rRNA gene sequences. One hundred sixty three strains were partially sequenced and analyzed phylogenetically. They were composed of 5 phyla, of which gamma-proteobacteria (58%), alpha-proteobacteria (20%), bacteriodetes (16%) were predominant. They were affiliated with 90 species. The 16S rRNA sequence similarity of the isolates was in 93.3 to 100 % range to reported sequence data. Thirty six isolates of among them were assumed to be novel species candidates based on similarity analysis of the 16S rRNA gene sequences. Overall, Proteobacteria and Bacteriodetes of the Dokdo coastal sea water showed a high diversity.

독도 연안에 존재하는 배양 가능한 미생물의 다양성을 16S rRNA 분석으로 조사하였다. 동도 선착장 주변과 서도 숙소 부근을 중심으로 채취한 시료에서 163개의 해양 미생물을 분리하였다. 분리한 미생물 163종을 16S rRNA 염기서열의 분석을 이용하여 부분동정 할 수 있었다. 부분동정된 미생물은 gamma-proteobacteria(58%), alpha-proteobacteria (20%), bacteriodetes(16%) 계통이 대부분을 차지하고 있었고, 그 외에도 low G+C Gram positive bacteria와 epsilonproteobacteria가소수 동정 되었다. 염기서열이 분석된 미생물들은 이전에 보고된 미생물들의 16S rRNA 유전자와 93.3%에서 100%의 유사도를 보이며 56속 94종으로 부분 동정되었다. 163종의 부분 동정된 미생물 중 36개의 분리 미생물이 새로운 종으로 분류될 후보군으로 추정되었다. 본 연구의 결과 독도연안 바닷물에는 proteobacteria와 bacteriodetes의 비율이 높게 나타났고, 미생물 다양성을 높게 유지하고 있었다. 이 다양한 미생물로부터 다양한 유용미생물 자원을 확보할 수 있고, 새로운 종으로 분류될 후보군 들은 추후 여러 생리생화학적 실험을 수행하여 새로운 종 또는 새로운 속으로 발표할 수 있을 것으로 판단된다.

Keywords

References

  1. Alfreider, A., J. Pernthhaler, R. Amann, B. Sattler, F. O. GlOckner, A. Wille, and R. Psenner. 1996. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of high mountain lake by in situ hybridization. Appl. Environ. Microbiol. 62: 2138-2144.
  2. Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169.
  3. Buchan, A., J. M. Gonzalez, and M. A. Moran. 2005. Overview of the marine Roseobacter lineage. Appl. Environ. Microbiol. 71: 5665-5677. https://doi.org/10.1128/AEM.71.10.5665-5677.2005
  4. Burns, A., M. Roche, and L. Berthe-Corti. 2001. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North sea intertidal sediment. Int. J. Syst. Evol. Microbiol. 51: 1997-2006. https://doi.org/10.1099/00207713-51-6-1997
  5. Campbell, B. J., A. S. Engel, M. L. Porter, and K. Takai. 2006. The versatile $\varepsilon$ -proteobacteria: key players in sulphidic habitats. Nat. Rev. Microbiol. 4: 458-468. https://doi.org/10.1038/nrmicro1414
  6. Cho B. C. and F. Azan. 1988. Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature 332: 441-443. https://doi.org/10.1038/332441a0
  7. Cottrell, M. T. and D. L. Kirchman. 2000. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl. Environ, Microbiol. 66: 5116-5122. https://doi.org/10.1128/AEM.66.12.5116-5122.2000
  8. Cottrell, M. T. and D. L. Kirchman. 2000. Natural assemblages of marine proteobacteria and members Cytophaga- Flavobacter cluster consuming low- and high-molecularweight dissolved organic matter. Appl. Environ. Microbiol. 66: 1692-1697. https://doi.org/10.1128/AEM.66.4.1692-1697.2000
  9. Ducklow H. W., A. P. Duncan, P. J. L. Williams, and M. D. John. 1986. Bacterioplankton: a sink for carbon in a coastal marine plankton community, Science 232: 865-867. https://doi.org/10.1126/science.232.4752.865
  10. Eilers, H., J. Pernthaler, F. O. GlÖckner, and R. Aman. 2000. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl. Environ, Microbiol. 66: 3044-3051. https://doi.org/10.1128/AEM.66.7.3044-3051.2000
  11. Fabiano, L. Thompson, I. Tetsuya, and S. Jean. 2004. Biodiversity of Vibrios. Microbiol. Mol. Biol. Rev. 68: 403-431. https://doi.org/10.1128/MMBR.68.3.403-431.2004
  12. Felsenstein, J. 1985. Confidence limits on phylogenesis: an approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  13. GlOckner, F. O., B. M. Fuchs, and R. Aman. 1999. Bacterioplankton compositions of lakesand oceans: a first comparison based on fluorescence- in situ-hybridization. Appl. Environ. Microbiol. 65: 3721-3726.
  14. Gonzalez, J. M., and M. A. Moran. 1997. Numerical dominance of a group of marine bacteria in the $\alpha$-subclass of the class Proteobacteria in coastal seawater. Appl. Environ. Microbiol. 63: 4237-4242.
  15. Gonzalez, J. M., W. B. Whitman, R. E. Hodson, and M. A. Moran. 1996. Identifying numerically abundant culturable bacteria from complex communities: an example from a lignin enrichment culture. Apple. Environ. Microbiol. 62: 4433-4440.
  16. Gong, Y. and S. J. Son. 1982. A study of oceanic thermal fronts in the Southern Japan Sea. Bull. Fish. Res. Dev. Agency 28: 25-54.
  17. Holmes, B. 1991. The genera Flavobacterium, Sphingobacterium, and Weeksella, In A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.). The prokaryotes. Springer-Verlag, Berlin, Germany. pp. 3620-3630.
  18. Ivanova, E. P., T. Sawabe, N. M. Gorshkova, V. I. Svetashev, V. V. Mikhailov, D. V. Nicolau, and R. Christen. 2001. Shewanella japonica sp. nov. Int. J. Syst. Evol. Microbiol. 51: 1027-1033. https://doi.org/10.1099/00207713-51-3-1027
  19. Ivanova, E. P., T. Sawabe, N. V. Zhukova, N. M. Gorshkova, O. I. Nedashkovskaya, K. Hayashi, G. M. Frolova, A. F. Sergeev, K. G. Pavel, V. V. Mikhailov, and D. V. Nicolau. 2003. Occurrence and diversity of mesophilic Shewanella strains isolated from the North-West Pacific Ocean. Syst. Appl. Microbiol. 26: 293-301. https://doi.org/10.1078/072320203322346155
  20. Jeon, S. A., H. R. Sung, Y. M. Park, J. H. Park, and S.- Y. Ghim. 2009. Analysis of endospore-forming bacteria or nitrogen-fixing bacteria community isolated from plants rhizosphere in Dokdo island. Kor. J. Microbiol. Biotechnol. 37: 189-196.
  21. Jukes, T. H. and C. R. Cantor. 1969. Evolution of protein molecules. In Mammalian protein metabolism, (Munro, H. N. eds.) pp. 21-132. New York, Academic Press, USA.
  22. Kang H. and D. S. Kang. 2002. Contribution of marine microbes to particulate organic matter in the Korea Strait. J. Kor. Soc. Oceanogr. 1: 35-44.
  23. Kim, B. S., H. M. Oh, H. J. Kang, S. S. Park, and J. S. Chun. 2004. Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14: 205-211.
  24. Lee, D. S., Y. S. Kim, S. Y. Jeong, C. K. Kang, and W. J. Lee. 2008. Environmental characteristics and distributions of marine bacteria in the surface sediments of Kamak Bay in winter and summer. J. Environ. Sciences 17: 755-765. https://doi.org/10.5322/JES.2008.17.7.755
  25. Lee, J. B., M. S. Han and H. S. Yang. 1998. The ecosystem of the southern coastal waters of the East Sea, Korea 1. Phytoplankton community structure and primary productivity in September, 1994. J. Korean Fish . Soc. 31: 45-55.
  26. Lee, J. H., H. H. Shin, D. S. Lee, K. K. Kwon, S. J. Kim, and H. K. Lim. 1999. Bacterial diversity of cultivable isolates from sea water and a marine coral, Plexauridae sp. near Mun-Sum, Cheju-Island. J. Microbiol. 37: 193-199.
  27. Maidak, B. L., J. R. Cole, T. G. Parker, CT Jr., P. R. Saxman, J. M. Stredwick, G. M. Garrity, B. Li, G. H. Olsen, S. Paranik, T. M. Schmidt, and J. M. Tiedje. 2000. The RDP (Ribosomal Database project) continues. Nucleic acids Res. 28: 173-174. https://doi.org/10.1093/nar/28.1.173
  28. McClung, C. R., D. G. Patriquin, and R. E. Davis. 1983. Campylobacter nitrofigilis sp. nov., a nitrogen-fixing bacterium associated with roots of Spartina alternijlora Loisel. Int. J. Syst. Bacteriol. 33: 605-612. https://doi.org/10.1099/00207713-33-3-605
  29. MEthe, B. A., W. D. Hiorns, and J. P. Zehr. 1998. Contrasts between marine and freshwater bacterial community composition: analyses of communities in Lake George and six other Adirondack lakes. Limnol. Oceanogr. 43: 368-374. https://doi.org/10.4319/lo.1998.43.2.0368
  30. Olsen, G. J., D. J. Lane, S. J. Giovannoni, and N. R. Pace. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Ann. Rev. Microbiol. 40: 337-365. https://doi.org/10.1146/annurev.mi.40.100186.002005
  31. Pernthaler, J., F. O. GlOckner, S. Unterholzner, A. Alfreider, R. Psenner, and R. Amann. 1998. Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl. Environ, Microbiol. 64: 4299-4306.
  32. Prado, S., J. Montes, J. L. Romalde, and J. L. Barja. 2009. Inhibitory activity of Phaeobacter strains against aquaculture pathogenic bacteria. Int. Microbiol. 12: 107-114.
  33. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  34. Vandamme, P., E . Falsen, R. Rossau, B. Hoste, P. Segers, R. Tytgat, J. De Ley. 1991. Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int. J. Syst. Evol. Microbiol. 41: 88-103.
  35. Wagner-Dobler, I. and H. Biebl. 2006. Environmental biology of the marine Roseobacter lineage. Annu. Rev. Microbiol. 60: 255-280. https://doi.org/10.1146/annurev.micro.60.080805.142115
  36. Wang J, X. Jiang, X. Mou, and H. Guan, 2004. Antioxidation of agar oligosaccharides produced by agarase from a marine bacterium. J. Appl. Phycol. 16: 333-340.
  37. Wimpenny, J. W., W. L. T. Robert, and C. Philip. 1983. Laboratory model systems for the investigation of spatially and temporally organized microbial ecosystems. In microbes in their natural environments. Cambridge Univ. Press. pp. 67-117.
  38. Woo., P. C. Y., S. K. P. Lau, J. L. L . Teng, H. Tse, and K. Y. Yuen. 2008 Then and now : use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. C.M.I. 14: 908-934.
  39. Yoon, J. H., S. T. Lee, and Y. H. Park. 1998. Inter- and intraspecific phylogenetic analysis of the genus Norcardioides and related taxa based on 16s rRNA gene sequences. Int. J. Syst. Bacteriol. 48: 187-194. https://doi.org/10.1099/00207713-48-1-187
  40. Yoon, J. H., K. H. Kang, S. Y. Lee, C. H. Lee and T. K. Oh. 2005. Maribacter dokdonensis sp. nov., isolated from sea water off a Korean island, Dokdo. Int. J. Syst. Evol. Microbiol. 54: 487-491.
  41. Yoon, J. H., S. J. Kang, S. Y. Lee, M. H. Lee, and T. K. Oh. 2005. Virgibacillus dokdonensis sp. nov., isolated from a Korean island, Dokdo, located at the edge of the East Sea in Korea. Int. J. Syst. Evol. Microbiol. 51: 1079-1086.
  42. Yoon, J. H., S. J. Kang, and T. K. Oh. 2006. Polaribacter dokdonensis sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 56: 1251-1255. https://doi.org/10.1099/ijs.0.63820-0