Medium Optimization for the Protease Production by Bacillus licheniformis Isolated from Cheongkookjang

청국장에서 분리된 Bacillus licheniformis의 Protease 생산을 위한 배지 최적화

  • Yoon, Ki-Hong (Department of Food Science & Biotechnology, Woosong University) ;
  • Shin, Hye-Young (Department of Food Science & Biotechnology, Woosong University)
  • 윤기홍 (우송대학교 식품생물과학과) ;
  • 신혜영 (우송대학교 식품생물과학과)
  • Received : 2010.09.27
  • Accepted : 2010.10.22
  • Published : 2010.12.28

Abstract

Bacillus licheniformis fermenting soybean product with highest score in consumer acceptance had been isolated from homemade Cheongkookjang. In order to develop the medium composition, effects of ingredients including nitrogen sources, carbon sources, metal ions and phosphate were examined for protease production of the isolate. Potato starch increased the protease productivity, while glucose repressed it. Yeast extract was the most effective nitrogen source for enzyme production. The calcium was found to increase protease activity slightly while cell growth and enzyme production was completely inhibited by divalent ions such as $Zn^{2+}$, $Cu^{2+}$ and $Co^{2+}$. The maximum protease productivity was reached approximately 800 unit/mL in the optimized medium consisting of potato starch (1.5%), yeast extract (1.5%), $CaCl_2$(0.7%), $K_2HPO_4$(0.03%) and $KH_2PO_4$(0.03%). The protease activity of culture filtrate was gradually decreased after incubation for 28 h.

청국장의 기호도를 개선하는 발효균으로 분리된 protease 생산균은 Bacillus licheniformis로 확인되었다. Protease 생산을 위한 배지를 최적화하기 위한 탄소원, 질소원, 인, 금속이온의 성분을 변화시키면서 균의 성장과 효소 생산성을 비교하였다. Glucose를 탄소원으로 사용하였을 때는 균의 성장은 정상적으로 일어나지만, protease 생산이 심하게 억제되는 것으로 나타났으며, Potato starch를 탄소원으로 사용하였을 때 효소 생산성이 가장 높았다. 질소원으로는 yeast extact가 효소 생산에 가장 적합하였다. 한편 2가 금속이온중 $Zn^{2+}$, $Cu^{2+}$, $Co^{2+}$을 배지에 첨가하였을 때는 균의 성장이 심하게 저해되었으며, 효소 생산도 되지 않았다. $CaCl_2$를 첨가한 배지에서는 균이 성장과 효소 생산성이 증가되었다. Potato starch(1.5%), yeast extract(1.5%), $CaCl_2$(0.7%), $K_2HPO_4$(0.03%)와 $KH_2PO_4$(0.03%)를 포함하는 것으로 구성된 최적화 배지에서 최대효소 생산성은 800 U/mL로 나타났으며 28시간 이후에는 배양액내 효소활성이 서서히 감소하였다.

Keywords

References

  1. Abdel-Fattah, Y. R., H. A. El-Enshasy, N. A. Soliman, and H. El-Gendi. 2009. Bioprocess development for production of alkaline protease by Bacillus pseudofirmus Mn6 through statistical experimental designs. J. Microbiol. Biotechnol. 19: 378-386. https://doi.org/10.4014/jmb.0806.380
  2. Agrebi, R., N. Hmidet, M. Hajji, N. Ktari, A. Haddar, N. Fakhfakh-Zouari, and M. Nasri. 2010. Fibrinolytic serine protease isolation from Bacillus amyloliquefaciens An6 grown on Mirabilis jalapa tuber powders. Appl. Biochem. Biotechnol. 162: 75-88. https://doi.org/10.1007/s12010-009-8800-z
  3. Fakhfakh, N., S. Kanoun, L. Manni, and M. Nasri. 2009. Production and biochemical and molecular characterization of a keratinolytic serine protease from chicken featherdegrading Bacillus licheniformis RPk. Can. J. Microbiol. 55: 427-436. https://doi.org/10.1139/W08-143
  4. Fakhfakh-Zouari, N., A. Haddar, N. Hmidet, F. Frikha, and M. Nasri. 2010. Application of statistical experimental design for optimization of keratinases production by Bacillus pumilus A1 grown on chicken feather and some biochemical properties. Process Biochem. 45: 617-626. https://doi.org/10.1016/j.procbio.2009.12.007
  5. Ferrero, M. A., G. R. Castro, C. M. Abate, M. D. Baigori, and F. Sineriz. 1996. Thermostable alkaline protease Bacillus licheniformis MIR 29: isolation, production and characterization. Appl. Microbiol. Biotechnol. 45: 327-332. https://doi.org/10.1007/s002530050691
  6. Gupta, R., O. K. Beg, and P. Lorenz. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol Biotechnol. 59: 13-32.
  7. Haddar, A., N. Fakhfakh-Zouari, N. Hmidet, F. Frikha, M. Nasri, and A. S. Kamoun. 2010. Low-cost fermentation medium for alkaline protease production by Bacillus mojavensis A21 using hulled grain of wheat and sardinella peptone. J. Biosci. Bioeng. 110: 288-294. https://doi.org/10.1016/j.jbiosc.2010.03.015
  8. Hadj-Ali, N. E., R. Agrebi, B. Ghorbel-Frikha, A. Sellami- Kamoun, S. Kanoun, and M. Nasri. 2007. Biochemical and molecular characterization of a detergent stable alkaline serine-protease from a newly isolated Bacillus licheniformis NH1. Enzyme Microb. Technol. 40: 515-523. https://doi.org/10.1016/j.enzmictec.2006.05.007
  9. Hong, S. W., J. Y. Kim, B. K. Lee, and K. S. Chung. 2006. The bacterial biological response modifier enriched Cheongkukjang fermentation. Kor. J. Food Sci. Technol. 38: 548-553.
  10. Hyun, K. -W., J. -S. Lee, J. -H. Ham, and S. -Y. Choi. 2005. Isolation and identification of microorganism with potent fibrinolytic activity from Korean traditional Deonjang. Kor. J. Microbiol. Biotechnol. 33: 24-28.
  11. Kim, S. S., J. -H Lee, Y. -S. Ahn, J. -H. Kim, and D. -K. Kang. 2003. A fibrinolytic enzyme from Bacillus amyloliquefaciens D4-7 isolated from Chungkook-jang; it's characterization and influence of additives on thermostability. Kor. J. Microbiol. Biotechnol. 31: 271-276.
  12. Kwon, H. -Y., Y. -S. Kim, G. -S. Kwon, C. -S. Kwon, and H. -Y. Sohn. 2004. Isolation of immuno-stimulating strain Bacillus pumilus JB-1 from Chungkook-jang and fermentational characteristics of JB-1. Kor. J. Microbiol. Biotechnol. 32: 291-296.
  13. Lee, D. -G., N. -Y. Kim, M. -K. Jang, B. H. Yoo, K. Y. Kim, S. G. Kim, Y. -K. Jeong, and S. -H. Lee. 2006. Isolation of a fibrinolytic bacterium from Cheongkukjang and characterization of its bioactivity. Kor. J. Microbiol. Biotechnol. 34: 299-305.
  14. Lee, G. H. and K. -H. Yoon. 2009. Sensory comparison of fermented soybeans (Cheongkookjang) inoculated with various Bacillus species by principal component analysis. J. Kor. Soc. Appl. Biol. Chem. 52: 726-730. https://doi.org/10.3839/jksabc.2009.120
  15. Lee, J., S. Park, W. -A. Choi, K. -H. Lee, Y. -K Jeong, I. -S. Kong, and S. Park. 1999. Production of a fibrinolytic enzyme in bioreactor culture by Bacillus subtilis BK-17. J. Microbiol. Biotechnol. 9: 443-449.
  16. Lee, S. -K., D. -H. Bae, T. -J. Kwon, S. -B. Lee, H. -H. Lee, J. -H. Park, S. Heo, and M. G. Johnson. 2001, Purification and characterization of a fibrinolytic enzyme from Bacillus sp. KDO-13 isolated from soybean paste. J. Microbiol. Biotechnol. 11: 845-852.
  17. Liu, C. H., C. S. Chiu, P. L. Ho, and S. W. Wang. 2009. Improvement in the growth performance of white shrimp, Litopenaeus vannamei, by a protease-producing probiotic, Bacillus subtilis E20, from natto. J. Appl. Microbiol. 107: 1031-1041. https://doi.org/10.1111/j.1365-2672.2009.04284.x
  18. Liu, S., Y. Fang, M. Lv, S. Wang, and L. Chen. 2010. Optimization of the production of organic solvent-stable protease by Bacillus sphaericus DS11 with response surface methodology. Bioresour. Technol. 101: 7924-7929. https://doi.org/10.1016/j.biortech.2010.05.057
  19. Nilegaonkar, S. S., V. P. Zambare, P. P. Kanekar, P. K. Dhakephalkar, and S. S. Sarnaik. 2007. Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326. Bioresour. Technol. 98: 1238-1245. https://doi.org/10.1016/j.biortech.2006.05.003
  20. Oskouie, S. F. G., F. Tabandeh, B. Yakhchali, and F. Eftekhar. 2008. Response surface optimization of medium composition for alkaline protease production by Bacillus clausii. Biochem. Eng. J. 39: 37-42. https://doi.org/10.1016/j.bej.2007.08.016
  21. Paik, H. -D., S. -K. Lee, S. Heo, S. -Y. Kim, H. -H. Lee, and T. -J. Kwon. 2004. Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from Chungkookjang. J. Microbiol. Biotechnol. 14: 829-835.
  22. Peng Y., Q. Huang, R. -H. Zhang, and Y. -Z. Zhang. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Compar. Biochem. Physiol. 134: 45-52.
  23. Veltman, O. R., G. Vriend, H. J. C. Berendsen, B. van den Burg, G. Venema, and V. G. H. Eijsink. 1998. A single calcium binding site is crucial for the calcium-dependent thermal stability of thermolysin-like proteases. Biochem. 37: 5312-5319. https://doi.org/10.1021/bi9725879
  24. Yoon, K. -H., M. S. Lee, B. W. Park, Y. -H. Park, H. Kim, J. H. Kim, and M. S. Kim. 2006. Enzyme production of a protease-producing strain, Bacillus sp SH-8 isolated from insect-eating plant. Kor. J. Microbiol. Biotechnol. 34: 323-328.
  25. Yun, G. -H., E. -T. Lee, and S. -D. Kim. 2003. Purification and characterization of a fibrinolytic enzyme produced from Bacillus amyloliquefaciens K42 isolated from Korean soy sauce. Kor. J. Microbiol. Biotechnol. 31: 284-291.