Anti-Oxidant Property and Inhibition of Melanin Synthesis of Eight Plant Extracts

수종의 식물수출물의 항산화 및 Melanin 합성 억제효과

  • Received : 2010.08.12
  • Accepted : 2010.11.16
  • Published : 2010.12.28

Abstract

Plants extracts are good resources to find functional compounds for human health. The following eight plants were collected and total phenolic contents were determined. Acer psedo-siebolianum showed the highest phenolic contents, 16.4 mg/g, whereas Cercidiphyllum japonica showed the lowest contents, 1.9 mg/g. The DPPH free radical scavenging capacities of the plant extracts showed high activity in following order : Acer ginnala ($21.3\;{\mu}g/mL$) > Cornus walteri ($23.9\;{\mu}g/mL$) > Distylum racemosum ($29.2\;{\mu}g/mL$) > Castanopsis cuspidata var. Thunbergii ($31.7\;{\mu}g/mL$) > Acer psedo-siebolianum ($34.6\;{\mu}g/mL$) > Thuijopsis dolabrata cv. Aurea ($53.1\;{\mu}g/mL$) > Cercidiphyllum Japonica ($115.2\;{\mu}g/mL$). Also the mushroom tyrosinase inhibitory activities of total extracts were determined at different concentration. D. racemosum extract showed highest (49.1% at 1,000 mg) in inhibitory activity than other seven extracts. The ethanol fraction $IC_{50}$ value: $118.1\;{\mu}g/mL$) from D. racemosum showed more inhibitory activity than ethyl acetate fraction ($IC_{50}$ value: $203\;{\mu}g/mL$). The ethanol fraction on showed no significant cytotoxicity in B16/F1 cells line up to $60\;{\mu}g/mL$. Over $80\;{\mu}g/mL$ of ethanol fraction showed cytotoxicity in B16/F1 cells. The melanin contents of cells were significantly attenuated by ethanol fraction in a dose-dependent manner. The $IC_{50}$ value of ethanol fraction was $75.4\;{\mu}g/mL$.

본 연구에서는 식물 추출물을 이용하여 항산화 활성 및 tyrosinase 활성 억제 효과를 측정하였다. 식물 추출물의 폴리페놀물질의 총 함량은 Acer psedo-siebolianum의 추출물이 16.4 mg/g로 가장 높은 추출량을 나타내었다. 항산화 활성 측정에서는 Acer ginnala 에서 $IC_{50}$값으로 $21.3\;{\mu}g/mL$으로 가장 좋은 활성을 나타내었다. 반면에 L-DOPA를 기질로 하여 mushroom tyrosinase의 활성 억제측정에서는 Distylum racemosum 1,000 mg에서 49.1%로 다른 추출물에 비하여 상대적으로 높은 활성을 나타내었다. Tyrosinase 활성 억제력이 가장 높은 D. racemosum의 추출물을 이용하여 ethanol 분획과 ethyl acetate 분획으로 분리하여, 이중 D. racemosum의 ethanol 분획에서 항산화 활성 $IC_{50}$ 값은 $0.9\;{\mu}g/mL$, tyrosinase 활성억제는 $IC_{50}$값이 $118.1\;{\mu}g/mL$로 ethyl actate 분획보다 높은 활성을 나타내었다. 또한 ethanol 분획을 이용하여 B16/F1 melanoma cell에서는 $60\;{\mu}g/mL$까지는 세포독성을 나타내지 않았으며 $80\;{\mu}g/mL$의 농도에서 약간의 세포독성을 나타내었다. 에탄올 분획을 이용한 세포내 melanin 색소의 생산억제 $IC_{50}$값은 $75.4\;{\mu}g/mL$로 분석되었다. 이러한 결과로 D. racemosum의 에탄올 추출물이 B16/F1 melanoma cell세포의 melanin색소합성대사에 관여하여 색소합성을 저해하는 것으로 보인다.

Keywords

References

  1. Aviram, M. 2000. Review of human studies on oxidative damage and antioxidant protection related to cardiovascular disease. Free radic. Res. 33: 85-97.
  2. Blios, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26: 1190-1200.
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Briganti, S., E. Camera, and M. Picardo. 2003. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Research 16: 101-110. https://doi.org/10.1034/j.1600-0749.2003.00029.x
  5. Christen, Y. 2000. Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr. 71: 621-629.
  6. Cookson, M. and P. Shaw. 1999. Oxidative stress and motor neurone disease. Brain Pathol. 9: 165-186.
  7. Davi, G., A. Falco, and C. Patrono. 2005. Lipid peroxidation in diabetes mellitus. Antioxid. Redox signal. 7: 256-268. https://doi.org/10.1089/ars.2005.7.256
  8. Finkel, T. and N. J. Holbrook. 2000. Oxidants, oxidative stress and the biology of aging. Trends Biochem. Sci. 25: 502-508. https://doi.org/10.1016/S0968-0004(00)01674-1
  9. Giugliano, D., A. Ceriello, and G. Paolisso. 1996. Oxidative stress and diabetic vascular complications. Diabetes Care 19: 257-267. https://doi.org/10.2337/diacare.19.3.257
  10. Gutfinger, T. 1981. Polyphenols in olive oils. J. Am. Oil Chem. Soc. 58: 966-968. https://doi.org/10.1007/BF02659771
  11. Halliwell, B., R. Aeschbach, J. Lolinger, and O. I. Aruoma. 1995. The characterization of antioxidants. Food Chem. Toxicol. 33: 601-617. https://doi.org/10.1016/0278-6915(95)00024-V
  12. Hearing, V. J. 2005. Biogenesis of pigment granules: a sensitive way to regulate melanocyte function. Journal of Dermatological Science 37: 3-14. https://doi.org/10.1016/j.jdermsci.2004.08.014
  13. Hitchon, C. and H. El-Gabaawy. 2004. Oxidation in rheumatoid arthritis. Arthritis Res. Ther. 6: 265-278. https://doi.org/10.1186/ar1447
  14. Hsu, S. 2005. Green tea and the skin. J. Am. Acad. Dermatol. 52: 1049-1059. https://doi.org/10.1016/j.jaad.2004.12.044
  15. Maeda, K. and M. Fukuda. 1996. Arbutin : mechanism of its depigmenting action in human melanocyte culture. J. Pharmacol. Exp. Ther. 276: 765-769.
  16. Matusukawa, R., Z. Dubinsky, E. Kishimoto, K. Masak, Y. Masuda, T. Takeuchi, M. Chihara, Y. Yamamoto, E. Niki, and I. Karube. 1997. A comparison of screening methods for antioxidant activity in seaweeds. Journal of Applied Physiology 9: 29-35.
  17. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survial: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  18. Nunomura, A., R. Castellani, X. Zhu, P. Moreira, G. Perry, and M. Smith. 2006. Involvement of oxidative stress in Alzheimer disease. J. Neuropathol. Exp. Nerrol. 65: 631-641. https://doi.org/10.1097/01.jnen.0000228136.58062.bf
  19. Raha, S. and B. Robinson. 2000. Mitochondria, oxygen free radical, antioxidants and human disease: where are we now? J. Lab. Clin. Med. 119: 598-620.
  20. Rice-Evans, C., N. J. Miller, and G. Paganda. 1996. Structure- antioxidant activity relationships of flavonoids and phenolic acid. Free Radical Biology and Medicine 20: 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  21. Seiji, M., K. Shimao, M. S. C. Birbeck, and T. B. Fitzpatrick. 1963. Subcellular localization of melanin biosynthesis. Ann. N. Y. Acad. SCI. 100: 497-533.
  22. Shimizu, K., R. Kondo, K. Sakai, N. Takeda, T. Nagahata, and T. Oniki. 2001. Novel vitamin E derivative with 4-substituted resorcinol moiety has both antioxidant and tyrosinase inhibitory properties. Lipids 36: 1321-1326. https://doi.org/10.1007/s11745-001-0847-9
  23. Van-Gaal, L., I. Mertens, and C. De-Block. 2006. Mechanisms linking obesity with cardiovascular disease. Nature 444: 875-880. https://doi.org/10.1038/nature05487
  24. Velioglu, Y. S., G. Mazza, Y. L. Gao, and B. D. Oomah. 1998. Antioxidant activty and total phenolics in selected fruits, vegetables and grain products. J. Agric. Food Chem. 46: 4113-4117. https://doi.org/10.1021/jf9801973
  25. Wood-kaczmar, A., S. Gandhi, and N. Wood. 2006. Understanding the molecular causes of Parkinson's disease. Trends Mol. Med. 12: 521-528. https://doi.org/10.1016/j.molmed.2006.09.007
  26. Yagi, A., T. Kanabara, N. Morinobu. 1986. The effect of tyrosinase inhibition for aloe. Plantamedica 3981: 517-519.
  27. Yang, J. Y., J. H. Koo, Y. G. Song, K. B. Kwon, J. H. Lee, H. S. Sohn, B. H. Park, E. C. Rhee, and J. W. Park. 2006. Stimulation of melanogenesis by scoparone in B16 melanoma cells. Acta Pharmacol. Sin. 27: 1467-1473. https://doi.org/10.1111/j.1745-7254.2006.00435.x