DOI QR코드

DOI QR Code

A Series of Vectors with Alternative Antibiotic Resistance Markers for Use in Lambda Red Recombination

  • Quick, Laura N. (Department of Biology, Villanova University) ;
  • Shah, Ashka (Department of Biology, Villanova University) ;
  • Wilson, James W. (Department of Biology, Villanova University)
  • Received : 2009.09.30
  • Accepted : 2009.11.11
  • Published : 2010.04.28

Abstract

A target bacterial strain of interest for use in Red-based recombineering may already encode resistance to antibiotic markers used with current Red recombination tools, such that the resistance cannot be removed. Such cases include those where markers are needed to maintain an unstable genetic element co-resident in the strain or those where the genetic source of resistance is not known. We report the availability of PCR templates with FRT-flanked mutagenesis cassettes and plasmids encoding Red recombination functions that contain marker combinations not currently available on widely disseminated lambda Red molecular reagents. The functionality of these convenient alternative tools is demonstrated.

Keywords

References

  1. Ayres, E. K., V. J. Thomson, G. Merino, D. Balderes, and D. H. Figurski. 1993. Precise deletions in large bacterial genomes by vector-mediated excision (VEX). The trfA gene of promiscuous plasmid RK2 is essential for replication in several Gramnegative hosts. J. Mol. Biol. 230: 174-185. https://doi.org/10.1006/jmbi.1993.1134
  2. Beloin, C. and C. J. Dorman. 2003. An extended role for the nucleoid structuring protein H-NS in the virulence gene regulatory cascade of Shigella flexneri. Mol. Microbiol. 47: 825-838. https://doi.org/10.1046/j.1365-2958.2003.03347.x
  3. Datsenko, K. A. and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U.S.A. 97: 6640-6645. https://doi.org/10.1073/pnas.120163297
  4. Derbise, A., B. Lesic, D. Dacheux, J. M. Ghigo, and E. Carniel. 2003. A rapid and simple method for inactivating chromosomal genes in Yersinia. FEMS Immunol. Med. Microbiol. 38: 113-116. https://doi.org/10.1016/S0928-8244(03)00181-0
  5. Janes, B. K., P. J. Pomposiello, A. Perez-Matos, D. J. Najarian, T. J. Goss, and R. A. Bender. 2001. Growth inhibition caused by overexpression of the structural gene for glutamate dehydrogenase (gdhA) from Klebsiella aerogenes. J. Bacteriol. 183: 2709-2714. https://doi.org/10.1128/JB.183.8.2709-2714.2001
  6. Lesic, B. and L. G. Rahme. 2008. Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa. BMC Mol. Biol. 9: 20. https://doi.org/10.1186/1471-2199-9-20
  7. Rossi, M. S., A. Paquelin, J. M. Ghigo, and C. Wandersman. 2003. Haemophore-mediated signal transduction across the bacterial cell envelope in Serratia marcescens: The inducer and the transported substrate are different molecules. Mol. Microbiol. 48: 1467-1480. https://doi.org/10.1046/j.1365-2958.2003.03516.x
  8. Sharan, S. K., L. C. Thomason, S. G. Kuznetsov, and D. L. Court. 2009. Recombineering: A homologous recombination-based method of genetic engineering. Nat. Protoc. 4: 206-223. https://doi.org/10.1038/nprot.2008.227
  9. Sun, W., S. Wang, and R. Curtiss 3rd. 2008. Highly efficient method for introducing successive multiple scarless gene deletions and markerless gene insertions into the Yersinia pestis chromosome. Appl. Environ. Microbiol. 74: 4241-4245. https://doi.org/10.1128/AEM.00940-08
  10. Uzzau, S., N. Figueroa-Bossi, S. Rubino, and L. Bossi. 2001. Epitope tagging of chromosomal genes in Salmonella. Proc. Natl. Acad. Sci. U.S.A. 98: 15264-15269. https://doi.org/10.1073/pnas.261348198
  11. Yu, D., H. M. Ellis, E. C. Lee, N. A. Jenkins, N. G. Copeland, and D. L. Court. 2000. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 97: 5978-5983. https://doi.org/10.1073/pnas.100127597

Cited by

  1. Self-Transmissible IncP R995 Plasmids with Alternative Markers and Utility for Flp/FRT Cloning Strategies vol.21, pp.11, 2010, https://doi.org/10.4014/jmb.1106.06032
  2. Bacterial Genus-Specific Tolerance for YdcI Expression vol.69, pp.5, 2010, https://doi.org/10.1007/s00284-014-0631-7
  3. The Bacterial iprA Gene Is Conserved across Enterobacteriaceae, Is Involved in Oxidative Stress Resistance, and Influences Gene Expression in Salmonella enterica Serovar Typhimurium vol.198, pp.16, 2010, https://doi.org/10.1128/jb.00144-16
  4. Fowl Adenovirus 4 (FAdV-4)-Based Infectious Clone for Vaccine Vector Development and Viral Gene Function Studies vol.10, pp.2, 2010, https://doi.org/10.3390/v10020097
  5. Quorum‐dependent transfer of the opine‐catabolic plasmid pAoF 64/95 is regulated by a novel mechanism involving inhibition of the TraR antiactivator TraM vol.8, pp.1, 2010, https://doi.org/10.1002/mbo3.625
  6. Differentially Marked IncP-1β R751 Plasmids for Cloning via Recombineering and Conjugation vol.68, pp.4, 2010, https://doi.org/10.33073/pjm-2019-052