DOI QR코드

DOI QR Code

Implications of Fullerene-60 upon in-vitro LDPE Biodegradation

  • Sah, Aditi (Department of Microbiology, G. B. Pant University of Agriculture and Technology) ;
  • Kapri, Anil (Department of Microbiology, G. B. Pant University of Agriculture and Technology) ;
  • Zaidi, M.G.H. (Department of Chemistry, G. B. Pant University of Agriculture and Technology) ;
  • Negi, Harshita (Department of Microbiology, G. B. Pant University of Agriculture and Technology) ;
  • Goel, Reeta (Department of Microbiology, G. B. Pant University of Agriculture and Technology)
  • Received : 2009.10.20
  • Accepted : 2010.01.08
  • Published : 2010.05.28

Abstract

Fullerene-60 nanoparticles were used for studying their effect on the low-density polyethylene (LDPE) biodegradation efficiency of two potential polymer-degrading consortia comprising three bacterial strains each. At a concentration of 0.01% (w/v) in minimal broth lacking dextrose, fullerene did not have any negative influence upon the consortia growth. However, fullerene was found to be detrimental for bacterial growth at higher concentrations (viz., 0.25%, 0.5%, and 1%). Although addition of 0.01% fullerene into the biodegradation assays containing 5mg/ml LDPE subsided growth curves significantly, subsequent analysis of the degraded products revealed an enhanced biodegradation. Fourier transform infrared spectroscopy (FT-IR) revealed breakage and formation of chemical bonds along with the introduction of ${\nu}C$-O frequencies into the hydrocarbon backbone of LDPE. Moreover, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) revealed a higher number of decomposition steps along with a 1,000-fold decrease in the heat of reactions (${\Delta}H$) in fullerene-assisted biodegraded LDPE, suggesting the probable formation of multiple macromolecular byproducts. This is the first report whereby fullerene-60, which is otherwise considered toxic, has helped to accelerate the polymer biodegradation process of bacterial consortia.

Keywords

References

  1. Bosi, S., T. Da Ros, G. Spalluto, and M. Prato. 2003. Fullerene derivatives: An attractive tool for biological applications. Eur. J. Med. Chem. 38: 913-923. https://doi.org/10.1016/j.ejmech.2003.09.005
  2. Chiron, J. P., J. Lamandé, F. Moussa, F. Trivin, and R. Ceolin. 2000. Effect of micronized C60 fullerene on the microbial growth in vitro. Ann. Pharm. Fr. 58: 170-175.
  3. Duran, N., P. D. Marcato, G. I. H. De Souza, O. L. Alves, and E. Esposito. 2007. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotech. 3: 203-208. https://doi.org/10.1166/jbn.2007.022
  4. Flores, M., N. Colon, O. Rivera, N. Villalba, Y. Baez, D. Quispitupa, J. Avalos, and O. Perales. 2004. A study of the growth curves of C. xerosis and E. coli bacteria in mediums containing cobalt ferrite nanoparticles. In: Materials Research Society Symposium Proceedings, Vol. 820. Materials Research Society, PA, U.S.A.
  5. Fu, G. F., P. S. Vary, and C. T. Lin. 2005. Anatase $TiO_2$ nanocomposites for antimicrobial coatings. J. Phys. Chem. 109: 8889-8898. https://doi.org/10.1021/jp0502196
  6. Goel, R., M. G. H. Zaidi, R. Soni, K. Lata, and Y. S. Shouche. 2008. Implication of Arthrobacter and Enterobacter species for polycarbonate degradation. Int. Biodeter. Biodegrad. 61: 167-172. https://doi.org/10.1016/j.ibiod.2007.07.001
  7. Hadad, D., S. Geresh, and A. Sivan. 2005. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. Appl. Microbiol. 98: 1093-1100. https://doi.org/10.1111/j.1365-2672.2005.02553.x
  8. Hayaishi, O. 2005. An odyssey with oxygen. Biochem. Biophys. Res. Commun. 338: 2-6. Harwood Academics, Amsterdam. https://doi.org/10.1016/j.bbrc.2005.09.019
  9. IPCS. 1990. In general, barium has been shown to inhibit the growth of bacteria, fungi, mosses, and algae. In J. Kost and D. M. Wiseman (eds.). Handbook of Biodegradable Polymers. Harwood Academics, Amsterdam.
  10. Kapri, A., M. G. H. Zaidi, and R. Goel. 2009. Nanobarium titanate as supplement to accelerate plastic waste biodegradation by indigenous bacterial consortia. AIP Conf. Proc. 1147: 469-474.
  11. Lyon, D. Y., D. A. Brown, and P. J. J. Alvarez. 2008. Implications and potential applications of bactericidal fullerene water suspensions: Effect of nC60 concentration, exposure conditions and shelf life. Water Sci. Technol. 57.10: 1533-1538. https://doi.org/10.2166/wst.2008.282
  12. Negi, H., A. Kapri, M. G. H. Zaidi, A. Satlewal, and R. Goel. 2009. Comparative in-vitro biodegradation studies of epoxy and its silicone blend by selected microbial consortia. Int. Biodeter. Biodegrad. 63: 553-558. https://doi.org/10.1016/j.ibiod.2009.03.001
  13. Oka, M., T. Tomioka, K. Tomita, A. Nishino, and S. Ueda. 1994. Inactivation of enveloped viruses by a silver-thiosulfate complex. Met. Based Drugs 1: 511. https://doi.org/10.1155/MBD.1994.511
  14. Oloffs, A., C. Crosse-Siestrup, S. Bisson, M. Rinck, R. Rudolvh, and U. Gross. 1994. Biocompatibility of silver-coated polyurethane catheters and silver-coated Dacron® material. Biomaterials 15: 753-758. https://doi.org/10.1016/0142-9612(94)90028-0
  15. Orhan, Y. and H. Buyukgungor. 2000. Enhancement of biodegradability of disposable polyethylene in controlled biological soil. Int. Biodeter. Biodegrad. 45: 49-55. https://doi.org/10.1016/S0964-8305(00)00048-2
  16. Perez, L., M. Flores, J. Avalos, L. S. Miguel, L. Fonseca, and O. Resto. 2003. Comparative study of the growth curves of B. subtilis, K. pneumoniae, C. xerosis and E. coli bacteria in medium containing nanometric silicon particles. In: Materials Research Society Symposium Proceedings, Vol. 737. Materials Research Society, PA, U.S.A.
  17. Prato, M. 1999. Fullerene materials. Top. Curr. Chem. 199: 173-187. https://doi.org/10.1007/3-540-68117-5_5
  18. Satlewal, A., R. Soni, M. G. H. Zaidi, Y. Shouche, and R. Goel. 2008. Comparative biodegradation of HDPE and LDPE using an indigenously developed microbial consortium. J. Microbiol. Biotechnol. 18: 477-482.
  19. Soni, R., A. Kapri, M. G. H. Zaidi, and R. Goel. 2009. Comparative biodegradation studies of non-poronized and poronized LDPE using indigenous microbial consortium. J. Polym. Environ. 17: 233-239. https://doi.org/10.1007/s10924-009-0143-x
  20. Soni, R., S. Kumari, M. G. H. Zaidi, Y. Shouche, and R. Goel. 2008. Practical applications of rhizospheric bacteria in biodegradation of polymers from plastic wastes, pp. 235-243. In I. Ahmad, J. Pichtel, and S. Hayat (eds.). Plant Bacteria Interactions: Strategies and Techniques to Promote Plant Growth. Wiley-VCH, Weinheim, Germany.
  21. Willert, M., R. Rothe, K. Landfaster, and M. Antonietti. 2001. Synthesis of inorganic and metallic nanoparticles by miniemulsification of molten salts and metals. Chem. Mater. 13: 4681-4685. https://doi.org/10.1021/cm011121g
  22. Williams, D. N., S. H. Ehrman, and T. R. P. Holoman. 2006. Evaluation of the microbial growth response to inorganic nanoparticles. J. Nanobiotechnol. 4: 3. https://doi.org/10.1186/1477-3155-4-3

Cited by

  1. Implications of SPION and NBT Nanoparticles upon In Vitro and In Situ Biodegradation of LDPE Film vol.20, pp.6, 2010, https://doi.org/10.4014/jmb.0912.12026
  2. Implications of a novel Pseudomonas species on low density polyethylene biodegradation: an in vitro to in silico approach vol.3, pp.1, 2010, https://doi.org/10.1186/2193-1801-3-497
  3. Comparative biodegradation studies of cow dung modified epoxy with epoxy using an indigenously developed bacterial consortium vol.9, pp.24, 2010, https://doi.org/10.5897/ajmr2015.7462
  4. Response of indigenously developed bacterial consortia in progressive degradation of polyvinyl chloride vol.253, pp.4, 2016, https://doi.org/10.1007/s00709-015-0855-9
  5. Selection of poly(R)-3-hydroxybutyric acid utilising bacteria by enrichment, optimisation and compatibility testing for consortia development vol.32, pp.6, 2016, https://doi.org/10.1080/02757540.2016.1162297
  6. Implications of SiO2 nanoparticles for in vitro biodegradation of low-density polyethylene with potential isolates of Bacillus, Pseudomonas, and their synergistic effect on Vigna mungo growth vol.2, pp.6, 2010, https://doi.org/10.1007/s40974-017-0068-5
  7. Characteristics investigation on biofilm formation and biodegradation activities of Pseudomonas aeruginosa strain ISJ14 colonizing low density polyethylene (LDPE) surface vol.6, pp.7, 2020, https://doi.org/10.1016/j.heliyon.2020.e04398