DOI QR코드

DOI QR Code

Isolation of a Novel Freshwater Agarolytic Cellvibrio sp. KY-YJ-3 and Characterization of Its Extracellular ${\beta}$-Agarase

  • Rhee, Young-Joon (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Han, Cho-Rong (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Won-Chan (School of Applied Biological Chemistry, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Jun, Do-Youn (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Rhee, In-Ku (School of Applied Biological Chemistry, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Kim, Young-Ho (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • Received : 2010.07.06
  • Accepted : 2010.07.21
  • Published : 2010.10.28

Abstract

A novel agarolytic bacterium, KY-YJ-3, producing extracellular agarase, was isolated from the freshwater sediment of the Sincheon River in Daegu, Korea. On the basis of Gram-staining data, morphology, and phylogenetic analysis of the 16S rDNA sequence, the isolate was identified as Cellvibrio sp. By ammonium sulfate precipitation followed by Toyopearl QAE-550C, Toyopearl HW-55F, and MonoQ column chromatographies, the extracellular agarase in the culture fluid could be purified 120.2-fold with a yield of 8.1%. The specific activity of the purified agarase was 84.2 U/mg. The molecular mass of the purified agarase was 70 kDa as determined by dodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal temperature and pH of the purified agarase were $35^{\circ}C$ and pH 7.0, respectively. The purified agarase failed to hydrolyze the other polysaccharide substrates, including carboxymethyl-cellulose, dextran, soluble starch, pectin, and polygalacturonic acid. Kinetic analysis of the agarose hydrolysis catalyzed by the purified agarase using thin-layer chromatography showed that the main products were neoagarobiose, neoagarotetraose, and neoagarohexaose. These results demonstrated that the newly isolated freshwater agarolytic bacterium KY-YJ-3 was a Cellvibrio sp., and could produce an extracellular ${\beta}$-agarase, which hydrolyzed agarose to yield neoagarobiose, neoagarotetraose, and neoagarohexaose as the main products.

Keywords

References

  1. Allouch, J., M. Jam, W. Helbert, T. Barbeyron, B. Kloareg, B. Henrissat, and M. Czjzek. 2003. The three-dimensional structures of two $\beta-agarases$. J. Biol. Chem. 278: 47171-47180. https://doi.org/10.1074/jbc.M308313200
  2. Aoki, T., T. Araki, and M. Kitamikado. 1990. Purification and characterization of a novel $\beta-agarases$from Vibrio sp. AP-2. Eur. J. Biochem. 187: 461-465.
  3. Bannikova, G. E., S. A. Lopatin, V. P. Varlamov, B. B. Kuznetsov, I. V. Kozina, M. L. Miroshnichenko, N. A. Chernykh, T. P. Turova, and E. A. Bonch-Osmolovskaia. 2008. The thermophilic bacteria hydrolyzing agar: Characterization of thermostable agarase. Appl. Biochem. Microbiol. 45: 366-371.
  4. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Buttner, M. J., I. M. Fernley, and M. J. Bibb. 1987. The agarase gene (dagA) of Streptomyces coelicolor (A3)2: Nucleotide sequence and transcriptional analysis. Mol. Gen. Genet. 209: 101-109. https://doi.org/10.1007/BF00329843
  6. Chen, H. M. and X. J. Yan. 2005. Antioxidant activities of agaro-oligosaccharides with different degrees of polymerization in cell-based system. Biochim. Biophys. Acta 1722: 103-111. https://doi.org/10.1016/j.bbagen.2004.11.016
  7. Duckworth, M. and W. Yaphe. 1971. The structure of agar. I. Fractionation of a complex mixture of polysaccharides. Carbohydr. Res. 16: 189-197. https://doi.org/10.1016/S0008-6215(00)86113-3
  8. Ekborg, N. A., J. M. Gonzalez, M. B. Howard, L. E. Taylor, S. W. Hutcheson, and R. W. Weiner. 2005. Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. Int. J. Syst. Evol. Microbiol. 55: 1545-1549 https://doi.org/10.1099/ijs.0.63627-0
  9. Fernandez, L. E., O. G. Valiente, V. Mainardi, J. L. Bello, H. Velez, and A. Rosado. 1989. Isolation and characterization of an antitumor active agar-type polysaccharide of Gracilaria dominguensis. Carbohydr. Res. 190: 77-83. https://doi.org/10.1016/0008-6215(89)84148-5
  10. Fu, X. T., C. H. Pan, H. Lin, and S. M. Kim. 2009. Gene cloning, expression, and characterization of a $\beta-agarases$, AgaB34, from Agarivorans albus YKW-34. J. Microbiol. Biotechnol. 19: 257-264.
  11. Fukazawa, S. and H. Kobayashi. 1987. Properties of the agarase from a luminous bacterium, Vibrio narveyi. Agric. Biol. Chem. 51: 269-270. https://doi.org/10.1271/bbb1961.51.269
  12. Hamer, G. K., S. S. Bhattacharjee, and W. Yaphe. 1997. Analysis of the enzymic hydrolysis products of agarose by 13CNMR spectroscopy. Carbohydr. Res. 54: C7-C10.
  13. Hosoda, A., M. Sakai, and S. Kanazawa. 2003. Isolation and characterization of agar-degrading Paenibacillus sp. associated with the rhizosphere of spinach. Biosci. Biotechnol. Biochem. 67: 1048-1055. https://doi.org/10.1271/bbb.67.1048
  14. Hu, B., Q. Gong, Y. Wang, Y. Ma, J. Li, and W. Yu. 2006. Prebiotic effects of neoagaro-oligosaccharides prepared by enzymatic hydrolysis of agarose. Anaerobe 12: 260-266. https://doi.org/10.1016/j.anaerobe.2006.07.005
  15. Jang, M. K., D. G. Lee, N. Y. Kim, K. H. Yu, H. J. Jang, S. W. Lee, H. J. Jang, Y. J. Lee, and S. H. Lee. 2009. Purification and characterization of neoagarotetraose from hydrolyzed agar. J. Microbiol. Biotechnol. 19: 1197-2000. https://doi.org/10.4014/jmb.0906.06045
  16. Jingwue, W., M. Haijin, J. Xiadlu, and G. Huashi. 2006. Characterization of a novel $\beta-agarases$from marine Alteromonas sp. SY37-12 and its degrading products. Appl. Microbiol. Biotechnol. 71: 833-839 https://doi.org/10.1007/s00253-005-0207-3
  17. Kim, Y. H., Y. S. Kim, J. R. Lee, E. K. Lee, and J. H. Seu. 1993. Enzymatic characteristics of an extracellular agarase of Cytophaga sp. KY-1 and molecular cloning of the agarase gene. J. Microbiol. Biotechnol. 3: 31-38.
  18. Kirimura, K., N. Masuda, Y. Iwasaki, H. Nakagawa, R. Kobayashi, and S. Usami. 1999. Purification and characterization of a novel beta-agarase from an alkalophilic bacterium, Alteromonas sp. E- 1. J. Biosci. Bioeng. 87: 436-441. https://doi.org/10.1016/S1389-1723(99)80091-7
  19. Kobayashi, R., M. Takisada, T. Suzuki, K. Kirimura, and S. Usami. 1997. Neoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem. 61: 162-163. https://doi.org/10.1271/bbb.61.162
  20. Kurahashi, M. and A. Yokota. 2004. Agarivorans albus gen. nov., sp. nov., a gamma-proteobacterium isolated from marine animals. Int. J. Syst. Evol. Microbiol. 54: 693-697. https://doi.org/10.1099/ijs.0.02778-0
  21. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685. https://doi.org/10.1038/227680a0
  22. Lakshmikanth, M., S. Manohar, J. Patnakar, P. Vaishampayan, Y. Shouche, and J. Lalitha. 2006. Optimization of culture conditions for the production of extracellular agarases from newly isolated Pseudomonas aeruginosa AG LSL-11. World J. Microbiol. Biotechnol. 22: 531-537. https://doi.org/10.1007/s11274-005-9068-2
  23. Lee, D. G., G. T. Park, N. Y. Kim, E. J. Lee, M. K. Jang, Y. G. Sin, et al. 2006. Cloning, expression, and characterization of a glycoside hydrolase family 50 $\beta-agarases$ from a marine Agarivorans isolate. Biotechnol. Lett. 28: 1925-1932. https://doi.org/10.1007/s10529-006-9171-y
  24. Lee, D. G., M. K. Jang, O. H. Lee, N. Y. Kim, S. A. Ju, and S. H. Lee. 2008. Over-production of a glycoside hydrolase family 50 beta-agarase from Agarivorans sp. JA-1 in Bacillus subtilis and the whitening effect of its product. Biotechnol. Lett. 30: 911-918. https://doi.org/10.1007/s10529-008-9634-4
  25. Leon, O., L. Quintana, G. Peruzzo, and J. C. Stebe. 1992. Purification and properties of an extracellular agarase from Alteromonas sp. strain C-1. Appl. Environ. Microbiol. 58: 4060-4063.
  26. Mergaert, J., D. Lednicka, J. Goris, M. C. Cnockaert, P. De Vos, and J. Swings. 2003. Taxonomic study of Cellvibrio strains and description of Cellvibrio ostraviensis sp. nov., Cellvibrio fibrivorans sp. nov. and Cellvibrio gandavensis sp. nov. Int. J. Syst. Evol. Microbiol. 53: 465-471. https://doi.org/10.1099/ijs.0.02316-0
  27. Morrice, L. M., M. W. McLean, F. B. Williamson, and W. F. Long. 1983. $\beta-Agarases$ I and II from Pseudomonas atlantica. Purifications and some properties. Eur. J. Biochem. 135: 553- 558. https://doi.org/10.1111/j.1432-1033.1983.tb07688.x
  28. Nagamuna, T., D. A. Coury, M. Poline-Fuller, A. Gibor, and K. Horikoshi. 1993. Characterization of agarolytic Microscilla isolates and their extracellular agarases. Syst. Appl. Microbiol. 16: 183- 190. https://doi.org/10.1111/j.1472-765X.1993.tb01392.x
  29. Nagy, T., D. Nurizzo, G. J. Davies, P. Biely, J. H. Lakey, D. N. Bolam, and H. J. Gilbert. 2003. The $\alpha-glucuronidase$, GlcA67A, of Cellvibrio japonicus utilizes the carboxylate and methyl groups of aldobiouronic acid as important substrate recognition determinants. J. Biol. Chem. 278: 20286-20292. https://doi.org/10.1074/jbc.M302205200
  30. Oberkotter, L. V. and F. A. Rosenberg. 1978. Extracellular $endo-\beta-1$,4-glucanase in Cellvibrio vulgaris. Environ. Microbiol. 36: 205-209.
  31. Ohta, Y., Y. Hatada, Y. Nogi, M. Miyazaki, Z. Li, M. Akita, et al. 2004. Enzymatic properties and nucleotide and amino acid sequences of a thermostable $\beta-agarase $from a novel species of deep-sea Microbulbifer. Appl. Microbiol. Biotechnol. 64: 505- 514. https://doi.org/10.1007/s00253-004-1573-y
  32. Ohta, Y., Y. Hatada, M. Miyazaki, Y. Nogi, S. Ito, and K. Horikoshi. 2005. Purification and characterization of a novel $\alpha$- agarase from a Thalassomonas sp. Curr. Microbiol. 50: 212- 216. https://doi.org/10.1007/s00284-004-4435-z
  33. Potin, P., C. Richard, C. Roches, and B. Kloareg. 1993. Purification and characterization of the $\beta-agarase $ from Alteromonas agralyticus (Cataldi) comb. nov., strain GJ1B. Eur. J. Biochem. 214: 599-607. https://doi.org/10.1111/j.1432-1033.1993.tb17959.x
  34. Sakellaris, H., J. M. Pemberton, and J. M. Manners. 1990. Genes from Cellvibrio mixtus encoding $\beta-1$,3-endoglucanase. Appl. Environ. Microbiol. 56: 3204-3208.
  35. Schroeder, D. C., M. A. Jaffer, and V. E. Coyne. 2003. Investigation of the role of a $\beta(1-4)-agarase $produced by Pseudoalteromonas gracilis B9 in eliciting disease symptoms in the red alga Gracilaria gracilis. Microbiology 149: 2919-2929 https://doi.org/10.1099/mic.0.26513-0
  36. Shieh, W. Y. and W. D. Jean. 1998. Alterococcus agarolyticus, gen. nov., sp. nov., a halophilic thermophilic bacterium capable of agar degradation. Can. J. Microbiol. 44: 637-645. https://doi.org/10.1139/w98-051
  37. Somogyi, M. 1952. Note on sugar determination. J. Biol. Chem. 195: 19-23.
  38. Stanier, R. Y. 1941. Studies on marine agar-digesting bacteria. J. Bacteriol. 42: 527-559.
  39. Sugano, Y., T. Matsumoto, and M. Noma. 1994. Sequence analysis of the agaB gene encoding a new $\beta-agarase $ from Vibrio sp. strain JT0107. Biochim. Biophys. Acta 1218: 105- 108. https://doi.org/10.1016/0167-4781(94)90109-0
  40. Suzuki, H., Y. Sawai, T. Suzuki, and K. Kawai. 2003. Purification and characterization of an extracellular beta-agarase from Bacillus sp. MK03. J. Biosci. Bioeng. 95: 328-334. https://doi.org/10.1016/S1389-1723(03)80063-4
  41. van der Meulen, H. J., W. Harder, and H. Veldkamp. 1974. Isolation and characterization of Cytophaga flevensis sp. nov., a new agarolytic flexibacterium. Antonie Van Leeuwenhoek 40: 329-346. https://doi.org/10.1007/BF00399345
  42. Vera, J., R. Alvarez, E. Murano, J. C. Slebe, and O. Leon. 1998. Identification of a marine agarolytic Pseudomonas isolate and characterization of its extracellular agarase. Appl. Environ. Microbiol. 64: 4378-4389.
  43. Wang, J., X. Jing, H. Mou, and H. Guan. 2004. Anti-oxidation of agar oligosaccharides produced by agarase from a marine bacterium. J. Appl. Phycol. 16: 333-340. https://doi.org/10.1023/B:JAPH.0000047944.40463.e6
  44. Wang, J., H. Mou, X. Jiang, and H. Guan. 2006. Characterization of a novel $\beta-agarase $ from marine Alteromonas sp. SY37-12 and its degrading products. Appl. Microbiol. Biotechnol. 71: 833- 839. https://doi.org/10.1007/s00253-005-0207-3
  45. Yoshizawa, Y., A. Ametani, J. Tsunehiro, K. Nomura, M. Itoh, F. Fukui, and S. Kaminogawa. 1995. Macrophage stimulation activity of the polysaccharide fraction from a marine alga (Porphyra yezoensis): Structure-function relationships and improved solubility. Biosci. Biotechnol. Biochem. 59: 1933- 1937. https://doi.org/10.1271/bbb.59.1933
  46. Zhong, Z., A. Toukdarian, D. Helinski, V. Knauf, S. Sykes, J. E. Wilkinson, et al. 2001. Sequence analysis of a 101-kilobase plasmid required for agar degradation by a Microscilla isolate. Appl. Environ. Microbiol. 67: 5771-5779. https://doi.org/10.1128/AEM.67.12.5771-5779.2001

Cited by

  1. Isolation and Characterization of a Novel Agarase-Producing Pseudoalteromonas spp. Bacterium from the Guts of Spiny Turban Shells vol.21, pp.8, 2010, https://doi.org/10.4014/jmb.1012.12027
  2. Isolation and Culture Properties of a Thermophilic Agarase-Producing Strain, Microbulbifer sp. SD-1 vol.14, pp.3, 2011, https://doi.org/10.5657/fas.2011.0186
  3. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose vol.92, pp.4, 2010, https://doi.org/10.1007/s00253-011-3347-7
  4. Rhodococcus sp. Q5, a novel agarolytic bacterium isolated from printing and dyeing wastewater vol.57, pp.5, 2010, https://doi.org/10.1007/s12223-012-0150-5
  5. Optimization of Pseudoalteromonas sp. JYBCL 1 Culture Conditions, Medium Composition and Extracellular ${\beta}$-agarase Activity vol.17, pp.5, 2010, https://doi.org/10.1007/s12257-012-0009-2
  6. Cloning of Agarase Gene from Non-Marine Agarolytic Bacterium Cellvibrio sp. vol.22, pp.9, 2010, https://doi.org/10.4014/jmb.1202.02020
  7. Agarase의 분류, 기원, 확보, 활성파악, 분리정제, 생산 및 응용 vol.22, pp.2, 2010, https://doi.org/10.5352/jls.2012.22.2.266
  8. Cellvibrio diazotrophicus sp. nov., a nitrogen-fixing bacteria isolated from the rhizosphere of salt meadow plants and emended description of the genus Cellvibrio vol.64, pp.2, 2014, https://doi.org/10.1099/ijs.0.054817-0
  9. Overexpression and Characterization of a Novel Thermostable β-Agarase YM01-3, from Marine Bacterium Catenovulum agarivorans YM01 T vol.12, pp.5, 2010, https://doi.org/10.3390/md12052731
  10. Cloning and Characterization of a Novel Agarase from a Newly Isolated Bacterium Simiduia sp. Strain TM-2 Able to Degrade Various Seaweeds vol.177, pp.3, 2010, https://doi.org/10.1007/s12010-015-1765-1
  11. 해양성 Simiduia sp. SH-1 균주의 분리 및 한천분해효소의 특성조사 vol.25, pp.11, 2015, https://doi.org/10.5352/jls.2015.25.11.1273
  12. Effects of Volcanic Pumice Inputs on Microbial Community Composition and Dissolved C/P Ratios in Lake Waters: an Experimental Approach vol.71, pp.1, 2010, https://doi.org/10.1007/s00248-015-0707-3
  13. 해양성 Marinomonas sp. SH-2 균주가 생성하는 agarase의 분리 및 특성조사 vol.26, pp.2, 2016, https://doi.org/10.5352/jls.2016.26.2.198
  14. Comparative Phenotype and Genome Analysis of Cellvibrio sp. PR1, a Xylanolytic and Agarolytic Bacterium from the Pearl River vol.2017, pp.None, 2010, https://doi.org/10.1155/2017/6304248
  15. Biochar and biomass organic amendments shaped different dominance of lithoautotrophs and organoheterotrophs in microbial communities colonizing neutral copper(Cu)-molybdenum(Mo)-gold(Au) tailings vol.309, pp.None, 2010, https://doi.org/10.1016/j.geoderma.2017.09.010
  16. Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-03366-x
  17. Characterization and Application of a Recombinant Exolytic GH50A β-Agarase from Cellvibrio sp. KY-GH-1 for Enzymatic Production of Neoagarobiose from Agarose vol.5, pp.45, 2010, https://doi.org/10.1021/acsomega.0c04390
  18. Cellvibrio sp. KY-GH-1의 아가로오스 당화 관련 엑소형 GH50A β-아가레이즈와 GH117A α-NABH의 특성 및 NA2와 L-AHG 양산에의 적용 가능성 vol.31, pp.3, 2010, https://doi.org/10.5352/jls.2021.31.3.356
  19. Effects of Gleditsia sinensis pod powder, coconut shell biochar and rice husk biochar as additives on bacterial communities and compost quality during vermicomposting of pig manure and wheat straw vol.295, pp.None, 2010, https://doi.org/10.1016/j.jenvman.2021.113136