DOI QR코드

DOI QR Code

Assessment of Root-Associated Paenibacillus polymyxa Groups on Growth Promotion and Induced Systemic Resistance in Pepper

  • Phi, Quyet-Tien (Department of Microbiology, Kyungpook National University) ;
  • Park, Yu-Mi (Department of Microbiology, Kyungpook National University) ;
  • Seul, Keyung-Jo (Department of Microbiology, Kyungpook National University) ;
  • Ryu, Choong-Min (Laboratory of Microbial Genomics, Industrial Biotechnology and Bioenergy Research Center, KRIBB) ;
  • Park, Seung-Hwan (Laboratory of Microbial Genomics, Industrial Biotechnology and Bioenergy Research Center, KRIBB) ;
  • Kim, Jong-Guk (Department of Microbiology, Kyungpook National University) ;
  • Ghim, Sa-Youl (Department of Microbiology, Kyungpook National University)
  • Received : 2010.07.07
  • Accepted : 2010.09.01
  • Published : 2010.12.28

Abstract

Twenty-nine P. polymyxa strains isolated from rhizospheres of various crops were clustered into five genotypic groups on the basis of BOX-PCR analysis. The characteristics of several plant growth-promoting factors among the isolates revealed the distinct attributes in each allocated group. Under gnotobiotic conditions, inoculation of pepper roots with P. polymyxa isolates significantly increased the biomass in 17 of total 29 treated plants with untreated plants. Experiments on induced systemic resistance (ISR) against bacterial spot pathogen Xanthomonas axonopodis pv. vesicatoria in pepper by P. polymyxa strains were conducted and only one isolate (KNUC265) was selected. Further studies into ISR mediation by the KNUC265 strain against the soft-rot pathogen Erwinia carotovora subsp. carotovora in tobacco demonstrated that the tobacco seedlings exposed to either bacterial volatiles or diffusible metabolites exhibited a reduction in disease severity. In conclusion, ISR and plant growth promotion triggered by P. polymyxa isolates were systemically investigated on pepper for the first time. The P. polymyxa KNUC265 strain, which elicited both ISR and plant growth promotion, could be potentially used in improving the yield of pepper and possibly of other crops.

Keywords

References

  1. Ash, C., F. G. Priest, and M. D. Collins. 1993. Molecular identification of rRNA group 3 Bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test; proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64: 253-260.
  2. Brewer, M. T. and R. P. Larkin. 2005. Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Protect. 24: 939-950. https://doi.org/10.1016/j.cropro.2005.01.012
  3. Cheong, H., S. Y. Park, C. M. Ryu, J. H. F. Kim, S. H. Park, and C. S. Park. 2005. Diversity of root-associated Paenibacillus spp. in winter crops from the southern part of Korea. J. Microbiol. Biotechnol. 15: 1286-1298.
  4. El-Meleigi, M. A., Z. M. Hassan, and G. H. Ibrahim. 2007. Biological control of common root rot of spring wheat by coating seeds with Bacillus or Trichoderma spp. JKAU-Meteorol. Environ. Arid Land Agric. Sci. 18: 3-12.
  5. Glickmann, E. and Y. Dessaux. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793-796.
  6. Helbig, J. 2001. Biological control of Botrytis cinerea Pers. ex Fr. in strawberry by Paenibacillus polymyxa (isolate 18191). J. Phytophathol. 149: 265-273. https://doi.org/10.1046/j.1439-0434.2001.00609.x
  7. Heulin, T., O. Berge, P. Mavingui, L. Gouzou, K. P. Hebbar, and J. Balandreau. 1994. Bacillus polymyxa and Rahnella aquatilis, the dominant $N_{2}$-fixing bacteria associated with wheat rhizosphere in French soils. Eur. J. Soil Biol. 30: 35-42.
  8. Kang, S. H., H. S. Cho, H. Cheong, C. M. Ryu, J. H. Kim, and S. H. Park. 2007. Two bacterial endophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.). J. Microbiol. Biotechnol 17: 96-103.
  9. Krause, M. S., T. J. J. De Ceuster, S. M. Tiquia, F. C. J. Michel, L. V. Madden, and H. A. J. Hoitink. 2003. Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish. Phytopathology 93: 1292-1300. https://doi.org/10.1094/PHYTO.2003.93.10.1292
  10. Lebuhn, M., T. Heulin, and A. Hartmann. 1997. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol. Ecol. 22: 325-334. https://doi.org/10.1111/j.1574-6941.1997.tb00384.x
  11. Leeman, M., J. A. Van Pelt, F. M. Den Ouden, M. Heinsbroek, P. A. H. M. Bakker, and B. Schippers. 1995. Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85: 1021-1027. https://doi.org/10.1094/Phyto-85-1021
  12. Leeman, M., F. M. Den Ouden, J. A. Van Pelt, F. P. M. Dirkx, H. Steijl, P. A. H. M. Bakker, and B. Schippers. 1996. Iron availability affects induction of systemic resistance against Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86: 149-155. https://doi.org/10.1094/Phyto-86-149
  13. Marwoto, B., Y. Nakashimada, T. Kakizono, and N. Nishio. 2002. Enhancement of (R,R)-2,3-butanediol production from xylose by Paenibacillus polymyxa at elevated temperatures. Biotechnol. Lett. 24: 109-114. https://doi.org/10.1023/A:1013894403987
  14. Mavingui, P. and T. Heulin. 1994. In vitro chitinase antifungal activity of soil, rhizosphere and rhizoplane populations of Bacillus polymyxa. Soil Biol. Biochem. 26: 801-803. https://doi.org/10.1016/0038-0717(94)90277-1
  15. Meziane, H., I. Van der Sluis, L. C. Van Loon, M. Hofte, and P. A. H. M. Bakker. 2005. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol. Plant Pathol. 6: 177-185. https://doi.org/10.1111/j.1364-3703.2005.00276.x
  16. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15: 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  17. Perez-Miranda, S., N. Cabirol, R. George-Tellez, L. S. Zamudio-Rivera, and F. J. Fernandez. 2007. O-CAS, a fast and universal method for siderophore detection. J. Microbiol. Methods 70: 127-131. https://doi.org/10.1016/j.mimet.2007.03.023
  18. Phi, Q. T., S. H. Oh, Y. M. Park, S. H. Park, C. M. Ryu, and S. Y. Ghim. 2008. Isolation and characterization of transposoninsertional mutants from Paenibacillus polymyxa E681 altering the biosynthesis of indole-3-acetic acid. Curr. Microbiol. 56: 524-530. https://doi.org/10.1007/s00284-008-9118-8
  19. Poly, F., L. Jocteur-Monrozier, and R. Bally. 2001. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res. Microbiol. 152: 95-103. https://doi.org/10.1016/S0923-2508(00)01172-4
  20. Ryu, C. M., C. H. Hu, M. S. Reddy, and J. W. Kloepper. 2003. Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol. 160: 413-420. https://doi.org/10.1046/j.1469-8137.2003.00883.x
  21. Ryu, C. M., M. A. Farag, C. H. Hu, M. S. Reddy, J. W. Kloepper, and P. W. Pare. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026. https://doi.org/10.1104/pp.103.026583
  22. Ryu, C. M., J. Kim, O. Choi, S. H. Kim, and C. S. Park. 2006. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol. Control 39: 282-289. https://doi.org/10.1016/j.biocontrol.2006.04.014
  23. Singh, H. P. and T. A. Singh. 1993. The interaction of rock phosphate, Bradyrhizobium, vesicular-arbuscular mycorrhizae and phosphate-solubilizing microbes on soybean grown in a sub-Himalayan mollisol. Mycorrhiza 4: 37-43. https://doi.org/10.1007/BF00203249
  24. Timmusk, S. and E. G. H. Wagner. 1999. The plant-growthpromoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: A possible connection between biotic and abiotic stress responses. Mol. Plant Microb. Interact. 2: 951-959.
  25. Van Loon, L. C. and B. R. Glick. 2004. Increased plant fitness by rhizobacteria, pp. 177-205. In H. Sandermann (eds.). Molecular Ecotoxicology of Plants. Springer-Verlag, Berlin Heidelberg.
  26. Van Peer, R., G. J. Niemann, and B. Schippers. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81: 728-734. https://doi.org/10.1094/Phyto-81-728

Cited by

  1. Toxicological assessment of selective pesticides towards plant growth promoting activities of phosphate solubilizing Pseudomonas aeruginosa vol.58, pp.3, 2010, https://doi.org/10.1556/amicr.58.2011.3.1
  2. 독도의 벼과식물로부터 분리된 Enterobacter spp.에 의한 고추의 흰별무늬병에 대한 전신유도저항성 vol.40, pp.2, 2010, https://doi.org/10.4014/kjmb.1203.03002
  3. Environment friendly agar and alginate-based thiram delivery system vol.95, pp.4, 2013, https://doi.org/10.1080/02772248.2013.801976
  4. Plant growth in Arabidopsis is assisted by compost soil-derived microbial communities vol.4, pp.None, 2010, https://doi.org/10.3389/fpls.2013.00235
  5. Endophytic bacteria isolated from orchid and their potential to promote plant growth vol.29, pp.2, 2010, https://doi.org/10.1007/s11274-012-1173-4
  6. A Simplified Method for Gene Knockout and Direct Screening of Recombinant Clones for Application in Paenibacillus polymyxa vol.8, pp.6, 2010, https://doi.org/10.1371/journal.pone.0068092
  7. Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance vol.6, pp.None, 2010, https://doi.org/10.3389/fmicb.2015.00387
  8. Kill or cure? The interaction between endophytic Paenibacillus and Serratia strains and the host plant is shaped by plant growth conditions vol.405, pp.1, 2016, https://doi.org/10.1007/s11104-015-2572-8
  9. Evaluation of Paenibacillus spp. isolates for the biological control of black rot in Brassica oleracea var. capitata (cabbage) vol.26, pp.4, 2010, https://doi.org/10.1080/09583157.2015.1129052
  10. Current knowledge and perspectives of Paenibacillus : a review vol.15, pp.None, 2010, https://doi.org/10.1186/s12934-016-0603-7
  11. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis vol.8, pp.None, 2017, https://doi.org/10.3389/fpls.2017.00211
  12. Fusaricidins from Paenibacillus polymyxa M‐1, a family of lipohexapeptides of unusual complexity—a mass spectrometric study vol.52, pp.1, 2017, https://doi.org/10.1002/jms.3891
  13. Identification of the biosynthesis gene cluster for the novel lantibiotic paenilan from Paenibacillus polymyxa E681 and characterization of its product vol.123, pp.5, 2010, https://doi.org/10.1111/jam.13580
  14. Impact of Plant Growth-Promoting Rhizobacteria on Vegetable Crop Production vol.24, pp.3, 2010, https://doi.org/10.1080/19315260.2017.1407984
  15. Draft genome sequence, disease-resistance genes, and phenotype of a Paenibacillus terrae strain (NK3-4) with the potential to control plant diseases vol.61, pp.10, 2010, https://doi.org/10.1139/gen-2018-0113
  16. Paenibacillus terrae NK3-4: A potential biocontrol agent that produces β-1,3-glucanase vol.129, pp.None, 2010, https://doi.org/10.1016/j.biocontrol.2018.09.019
  17. 독도 자생식물 번행초로부터 분리한 바실러스 속 식물생장촉진근권 세균에 의한 식물병 저항성 유도 vol.47, pp.4, 2010, https://doi.org/10.4014/mbl.1902.02005
  18. Biological Control of Tomato Bacterial Wilt, Kimchi Cabbage Soft Rot, and Red Pepper Bacterial Leaf Spot Using Paenibacillus elgii JCK-5075 vol.11, pp.None, 2010, https://doi.org/10.3389/fpls.2020.00775
  19. Auxins of microbial origin and their use in agriculture vol.104, pp.20, 2020, https://doi.org/10.1007/s00253-020-10890-8
  20. A genomic perspective on the potential of termite-associated Cellulosimicrobium cellulans MP1 as producer of plant biomass-acting enzymes and exopolysaccharides vol.9, pp.None, 2010, https://doi.org/10.7717/peerj.11839