DOI QR코드

DOI QR Code

Characterization of a Paenibacillus woosongensis ${\beta}$-Xylosidase/${\alpha}$-Arabinofuranosidase Produced by Recombinant Escherichia coli

  • Kim, Yeon-A (Department of Food Science and Biotechnology, Woosong University) ;
  • Yoon, Ki-Hong (Department of Food Science and Biotechnology, Woosong University)
  • Received : 2010.10.19
  • Accepted : 2010.10.27
  • Published : 2010.12.28

Abstract

A gene encoding the ${\beta}$-xylosidase/${\alpha}$-arabinofuranosidase (XylC) of Paenibacillus woosongensis was cloned into Escherichia coli. This xylC gene consisted of 1,425 nucleotides, encoding a polypeptide of 474 amino acid residues. The deduced amino acid sequence exhibited an 80% similarity with those of both Clostridium stercorarium ${\beta}$-xylosidase/${\alpha}$-N-arabinosidase and Bacillus cellulosilyticus ${\alpha}$-arabinofuranosidase, belonging to the glycosyl hydrolase family 43. The structural gene was subcloned with a C-terminal His-tag into a pET23a(+) expression vector. The His-tagged XylC, purified from a cell-free extract of a recombinant E. coli BL21(DE3) Codon Plus carrying a xylC gene by affinity chromatography, was active on para-nitrophenyl-${\alpha}$-arabinofuranoside (pNPA) as well as para-nitrophenyl-${\beta}$-xylopyranoside (pNPX). However, the enzymatic activities for the substrates were somewhat incongruously influenced by reaction pHs and temperatures. The enzyme was also affected by various chemicals at different levels. SDS (5 mM) inhibited the enzymatic activity for pNPX, while enhancing the enzymatic activity for pNPA. Enzyme activity was also found to be inhibited by addition of pentose or hexose. The Michaelis constant and maximum velocity of the purified enzyme were determined for hydrolysis of pNPX and pNPA, respectively.

Keywords

References

  1. Brüx, C., A. Ben-David, D. Shallom-Shezifi, M. Leon, K. Niefind, G. Shoham, Y. Shoham, and D. Schomburg. 2006. The structure of an inverting GH43 $\beta$-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues. J. Mol. Biol. 359: 97-109. https://doi.org/10.1016/j.jmb.2006.03.005
  2. Contreras, L. M., J. Gomez, J. Prieto, J. M. Clemente-Jimenez, F. J. Las Heras-Vazquez, F. Rodriguez-Vico, F. J. Blanco, and J. L. Neira. 2008. The family 52 $\beta$-xylosidase from Geobacillus stearothermophilus is a dimer: Structural and biophysical characterization of a glycoside hydrolase. Biochim. Biophys. Acta 1784: 1924-1934. https://doi.org/10.1016/j.bbapap.2008.06.019
  3. Dodd, D., S. A. Kocherginskaya, M. A. Spies, K. E. Beery, C. A. Abbas, R. I. Mackie, and I. K. Cann. 2009. Biochemical analysis of a $\beta$-D-xylosidase and a bifunctional xylanase-ferulic acid esterase from a xylanolytic gene cluster in Prevotella ruminicola 23. J. Bacteriol. 191: 3328-3338. https://doi.org/10.1128/JB.01628-08
  4. Jordan, D. B., X. L. Li, C. A. Dunlap, T. R. Whitehead, and M. A. Cotta. 2007. Structure-function relationships of a catalytically efficient $\beta$-D-xylosidase. Appl. Biochem. Biotechnol. 141: 51-76. https://doi.org/10.1007/s12010-007-9210-8
  5. La Grange, D., C., I. S. Pretorius, and W. H van Zyl. 1997. Cloning of the Bacillus pumilus $\beta$-xylosidase gene (xynB) and its expression in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 47: 262-266. https://doi.org/10.1007/s002530050924
  6. Lama, L., V. Calandrelli, A. Gambacorta, and B. Nicolaus. 2004. Purification and characterization of thermostable xylanase and $\beta$-xylosidase by the thermophilic bacterium Bacillus thermantarcticus. Res. Microbiol. 155: 283-289. https://doi.org/10.1016/j.resmic.2004.02.001
  7. Lee, J.-C. and K.-H. Yoon. 2008. Paenibacillus woosongensis sp. nov., a xylanolytic bacterium isolated from forest soil. Int. J. Syst. Evol. Microbiol. 58: 612-616. https://doi.org/10.1099/ijs.0.65350-0
  8. Lee, Y, E. and J. G. Zeikus. 1993. Genetic organization, sequence and biochemical characterization of recombinant $\beta$-xylosidase from Thermoanaerobacterium saccharolyticum strain B6A-RI. J. Gen. Microbiol. 139: 1235-1243. https://doi.org/10.1099/00221287-139-6-1235
  9. Luan, H., Y. Hu, X. Liu, D. Hao, and L.Yang. 2008. Purification and characterization of a $\beta$-D-xylosidase from Leifsonia shinshuensis DICP 16. Sheng Wu Gong Cheng Xue Bao 24: 867-873.
  10. Quintero, D., Z .Velasco, E. Hurtado-Gomez, J. L. Neira, and L. M. Contreras. 2007. Isolation and characterization of a thermostable $\beta$-xylosidase in the thermophilic bacterium Geobacillus pallidus. Biochim. Biophys. Acta 1774: 510-518. https://doi.org/10.1016/j.bbapap.2007.02.002
  11. Sakka, K., K. Yoshikawa, Y. Kojima, S. Karita, K. Ohmiya, and K. Shimada. 1993. Nucleotide sequence of the Clostridium stercorarium xylA gene encoding a bifunctional protein with $\beta$-D-xylosidase and $\alpha$-L-arabinofuranosidase activities, and properties of the translated product. Biosci. Biotechnol. Biochem. 57: 268-272. https://doi.org/10.1271/bbb.57.268
  12. Shao, W. and J. Wiegel. 1992. Purification and characterization of a thermostable $\beta$-xylosidase from Thermoanaerobacter ethanolicus. J. Bacteriol. 174: 5848-5853.
  13. Suryani, K. T., K. Sakka, and K. Ohmiya. 2004. Sequencing and expression of the gene encoding the Clostridium stercorarium $\beta$-xylosidase Xyl43B in Escherichia coli. Biosci. Biotechnol. Biochem. 68: 609-614. https://doi.org/10.1271/bbb.68.609
  14. Suzuki, T., E. Kitagawa, F. Sakakibara, K. Ibata, K. Usui, and K. Kawai. 2001. Cloning, expression, and characterization of a family 52 $\beta$-xylosidase gene (xysB) of a multiple-xylanase-producing bacterium, Aeromonas caviae ME-1. Biosci. Biotechnol. Biochem. 65: 487-494. https://doi.org/10.1271/bbb.65.487
  15. Tsujibo, H., C. Takada, A. Tsuji, M. Kosaka, K. Miyamoto, and Y. Inamori. 2001. Cloning, sequencing, and expression of the gene encoding an intracellular $\beta$-D-xylosidase from Streptomyces thermoviolaceus OPC-520. Biosci. Biotechnol. Biochem. 65: 1824-1831. https://doi.org/10.1271/bbb.65.1824
  16. Valenzuela, S. V., P. Diaz, and F. I. Javier Pastor. 2010. Recombinant expression of an alkali stable GH10 xylanase from Paenibacillus barcinonensis. J. Agric. Food Chem. 58: 4814-4818. https://doi.org/10.1021/jf9045792
  17. Waeonukul, R., P. Pason, K. L. Kyu, K. Sakka, A. Kosugi, Y. Mori, and K. Ratanakhanokchai. 2009. Cloning, sequencing, and expression of the gene encoding a multidomain endo-$\beta$-1,4-xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. J. Microbiol. Biotechnol. 19: 277-285.
  18. Wagschal, K., C. Heng, C. C. Lee, G. H. Robertson, W. J. Orts, and D. W. Wong. 2009. Purification and characterization of a glycoside hydrolase family 43 $\beta$-xylosidase from Geobacillus thermoleovorans IT-08. Appl. Biochem. Biotechnol. 155: 304-313.
  19. Xu, W. Z., Y. Shima, S. Negoro, and I. Urabe, 1991. Sequence and properties of $\beta$-xylosidase from Bacillus pumilus IPO. Contradiction of the previous nucleotide sequence. Eur. J. Biochem. 202: 1197-1203. https://doi.org/10.1111/j.1432-1033.1991.tb16490.x
  20. Xue, Y. and W. Shao. 2004. Expression and characterization of a thermostable $\beta$-xylosidase from the hyperthermophile, Thermotoga maritima. Biotechnol. Lett. 26: 1511-1515.
  21. Zhang, J. and L. R. Lynd. 2010. Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms. Biotechnol. Bioeng. 107: 235-244. https://doi.org/10.1002/bit.22811

Cited by

  1. Thermostable Hemicellulases of a Bacterium, Geobacillus sp. DC3, Isolated from the Former Homestake Gold Mine in Lead, South Dakota vol.172, pp.7, 2010, https://doi.org/10.1007/s12010-014-0784-7
  2. Screening, identification, and characterization of a GH43 family β-xylosidase/α-arabinofuranosidase from a compost microbial metagenome vol.99, pp.21, 2010, https://doi.org/10.1007/s00253-015-6647-5
  3. A New GH43 α-Arabinofuranosidase from Humicola insolens Y1: Biochemical Characterization and Synergistic Action with a Xylanase on Xylan Degradation vol.175, pp.4, 2010, https://doi.org/10.1007/s12010-014-1416-y
  4. Screening of β‐Glucosidase and β‐Xylosidase Activities in Four Non‐Saccharomyces Yeast Isolates vol.80, pp.8, 2010, https://doi.org/10.1111/1750-3841.12954
  5. Research Progress Concerning Fungal and Bacterial β-Xylosidases vol.178, pp.4, 2010, https://doi.org/10.1007/s12010-015-1908-4
  6. Novel Trifunctional Xylanolytic Enzyme Axy43A from Paenibacillus curdlanolyticus Strain B-6 Exhibiting Endo-Xylanase, β-D-Xylosidase, and Arabinoxylan Arabinofuranohydrolase Acti vol.82, pp.23, 2010, https://doi.org/10.1128/aem.02256-16
  7. Paenibacillus woosongensis의 Xylanase 11B 유전자 클로닝과 특성분석 vol.45, pp.2, 2010, https://doi.org/10.4014/mbl.1704.04001
  8. Characterization of a furan aldehyde‐tolerant β‐xylosidase/α‐arabinosidase obtained through a synthetic metagenomics approach vol.123, pp.1, 2010, https://doi.org/10.1111/jam.13484
  9. SACCHARIS: an automated pipeline to streamline discovery of carbohydrate active enzyme activities within polyspecific families and de novo sequence datasets vol.11, pp.None, 2010, https://doi.org/10.1186/s13068-018-1027-x
  10. Characterization of a recombinant β-xylosidase of GH43 family fromBacteroides ovatusstrain ATCC 8483 vol.38, pp.1, 2010, https://doi.org/10.1080/10242422.2019.1631813
  11. Characterization of an exocellular ethanol-tolerant β-glucosidase from Quambalaria cyanescens isolates from unripened grapes vol.246, pp.11, 2010, https://doi.org/10.1007/s00217-020-03578-w