DOI QR코드

DOI QR Code

Nutrient Synchrony: Is it a Suitable Strategy to Improve Nitrogen Utilization and Animal Performance?

  • Yang, Ji-Young (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University) ;
  • Seo, J. (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University) ;
  • Kim, H.J. (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University) ;
  • Seo, S. (Divison of Animal Science and Resource, Chungnam National University) ;
  • Ha, Jong-K. (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University)
  • Published : 2010.07.01

Abstract

The objective of this paper was to review recent studies on nutrient synchrony and the effects of synchronization of energy and N supply in the rumen on nitrogen utilization and animal performance. Theoretically, synchronization of energy and N supply in the rumen should allow more efficient use of nutrients by rumen microbes, increase microbial protein and fermentation end products, and thus increase available nutrients in the small intestine. Efficient use of nutrients possibly improves animal performance and reduces nutrient excretion to the environment. However, a number of studies showed contradictory results in microbial protein synthesis, nitrogen retention and animal production performance. Since there are additional challenges to nutrient synchrony that must be addressed, further research is required to apply the nutrient synchrony concept directly to the field situation.

Keywords

References

  1. Aldrich, J. M., L. D. Muller, G. A. Varga and L. C. Griel. 1993. Nonstructural carbohydrate and protein effects on rumen fermentation, nutrient flow, and performance of dairy cows. J. Dairy Sci. 76:1091-1105. https://doi.org/10.3168/jds.S0022-0302(93)77438-X
  2. Bach, A., S. Calsamiglia and M. D. Stern 2005. Nitrogen metabolism in the rumen. J. Dairy Sci. 88:E9-E21. https://doi.org/10.3168/jds.S0022-0302(05)73133-7
  3. Cabrita, A. R., J. R. J. Dewhurst, J. M. F. Abreu and A. J. M. Fonseca 2006. Evaluation of the effects of synchronizing the availability of N and energy on rumen function and production responses of dairy cows- review. Anim. Res. 55:1-24. https://doi.org/10.1051/animres:2005045
  4. Castillo, A. R., E. Kebreab, D. E. Beever, J. H. Barbi, J. D. Sutton, H. C. Kirby and J. France. 2001. The effect of protein supplementation on nitrogen utilization in lactating dairy cows fed grass silage diets. J. Anim. Sci. 79:247.
  5. Chumpawadee, S. K. Sommart, T. Vongpralub and V. Pattarajinda. 2006. Effects of synchronizing the rate of dietary energy and nitrogen release on ruminal fermentation, microbial protein synthesis, blood urea nitrogen and nutrient digestibility in beef cattle. Asian-Aust. J. Anim. Sci. 19(2):181-188.
  6. Cole, N. A. and R. W. Todd. 2008. Opportunities to enhance performance and efficiency through nutrient synchrony in concentrate-fed ruminants. J. Anim. Sci. 86(E. Suppl.):E318-E333.
  7. Czerkawski, J. W. 1986. An introduction to rumen studies. Oxford : Pergamon Press.
  8. Dewhurst, R. J., D. R. Davies and R. J. Merry. 2000. Microbial protein supply from the rumen. Anim. Feed Sci. Technol. 85:1-21. https://doi.org/10.1016/S0377-8401(00)00139-5
  9. Dewhurst, R. J., W. J. Fisher, J. K. S. Tweed and R. J. Willkins. 2003. Comparison of grass and legume silages for milk production. 1. Production responses with different levels of concentrate. J. Dairy Sci. 86:2598-2611. https://doi.org/10.3168/jds.S0022-0302(03)73855-7
  10. Elseed, F. A. M. A. 2005. Effect of supplemental protein feeding frequency on ruminal characteristics and microbial N production in sheep fed treated rice straw. Small Rumin. Res. 57:11-17. https://doi.org/10.1016/j.smallrumres.2004.04.013
  11. Gekara, O. J., E. C. Prigge, W. B. Bryan, E. L. Nestor and G. Seidel. 2005. Influence of sward height, daily timing of concentrate supplementation, and restricted time for grazing on forage utilization by lactation beef cows. J. Anim. Sci. 83:1435-1444.
  12. Hall, M. B. and G. B. Huntington. 2008. Nutrient synchrony: Sound in theory, elusive in practice. J. Anim. Sci. 86:E287-E292.
  13. Henderson, A. R., P. C. Garnsworthy, J. R. Newbold and P. J. Buttery. 1998. The effect of asynchronous diets on the function of the rumen in the lactating dairy cow. Proceedings of the BSAS Annual Meeting, p. 19.
  14. Henning, P. H., D. G. Steyn and H. H. Meissner. 1991. The effect of energy and nitrogen supply pattern on rumen bacteria growth in vitro. Anim. Prod. 53:165-175. https://doi.org/10.1017/S0003356100020080
  15. Henning, P. H., D. G. Steyn and H. H. Meissner. 1993. Effect of synchronization of energy and nitrogen supply on ruminal characteristics and microbial growth. J. Anim. Sci. 71:2516-2528.
  16. Hersom, M. J. 2007. Opportunities to enhance performance and efficiency through nutrient synchrony in forage - fed ruminants. J. Anim. Sci. 86:E306-E317. https://doi.org/10.2527/jas.2007-0463
  17. Holder, P., P. J. Buttery and P. C. Garnsworthy. 1995. The effect of dietary synchrony on rumen nitrogen recycling in sheep. Proc. Br. Anim. Sci. 70(Abstr.).
  18. Hristov, A. N. and E. Pfeffer 2005. Nitrogen and phosphorous nutrition of cattle. CABI Publishing. USA. p118.
  19. Huhtanen, P. 2005. Critical aspects of feed protein evaluation systems for ruminants. J. Anim. Feed Sci. 14:145-170.
  20. Hume, I. D., R. J. Moir and M. Somers. 1970. Synthesis of microbial protein in the rumen. I. influence of the level of nitrogen intake. Aust. J. Agric. Res. 25:155-164.
  21. Ichinohe, T. and T. Fujihara. 2008. Adaptive changes in microbial synthesis and nitrogen balance with progressing dietary feeding periods in sheep fed diets differing in their ruminal degradation synchronicity between nitrogen and organic matter. Anim. Sci. J. 79:322-331. https://doi.org/10.1111/j.1740-0929.2008.00533.x
  22. Johnson, R. R. 1976. Influence of carbohydrate solubility on non protein nitrogen utilization in the ruminant. J. Anim. Sci. 43:184-191.
  23. Karsli, M. A. and J. R. Russell. 2002. Effects of source and concentrations of nitrogen and carbohydrate on ruminal microbial protein synthesis. Turk. J. Vet. Sci. 26:201-207.
  24. Kaswari, T., Peter Lebzien and Gerhard Flachowsky. 2006. Studies on the relationship between the synchronization index and the microbial protein synthesis in the rumen of dairy cows. Anim. Feed Sci. Technol. 139:1-22.
  25. Khezri, A., K. Rezayazdi, M. Danesh. Mesgaran and M. Moradi-Sharbabk. 2009. Effect of different rumen-degradable carbohydrates on rumen fermentation, nitrogen metabolism and actation performance of holstein dairy cows. Asian-Aust. J. Anim. Sci. 22(5):651-658. https://doi.org/10.5713/ajas.2009.80426
  26. Kolver, E., L. D. MullerG. A. Varga and T. J. Cassidy. 1998. Synchronization of ruminal degradation of supplemental carbohydrate with pasture nitrogen in lactating dairy cows. J. Dairy. Sci. 81:2017-2028. https://doi.org/10.3168/jds.S0022-0302(98)75776-5
  27. Kim, K. H., J. J. Choung and D. G. Chamberlain. 1999a. Effects of varying degrees of synchrony of energy and nitrogen release in the rumen on the synthesis of microbial protein in cattle consuming a diet of grass silage and cereal-based concentrate. J. Sci. Food Agric. 79:1441-1447. https://doi.org/10.1002/(SICI)1097-0010(199908)79:11<1441::AID-JSFA385>3.0.CO;2-Z
  28. Kim, K. H., Y. G. Oh, J. J. Choung and D. G. Chamberlain. 1999b. Effects of varying degrees of synchrony of energy and nitrogen release in the rumen on the synthesis of microbial protein in cattle consuming grass silage. J. Sci. Food Agric. 79:833-838. https://doi.org/10.1002/(SICI)1097-0010(19990501)79:6<833::AID-JSFA293>3.0.CO;2-C
  29. Lardy, G. P., D. N. Ulmer, V. L. Anderson and J. S. Caton. 2004. Effect of increasing level of supplemental barley on forage intake, digestibility, and ruminal fermentation in steers fed medium quality grass hay. J. Anim. Sci. 82:3662-3668.
  30. Lee, H. J., E. J. Kim, W. J. Maeng, J. E. Cockburn and N. D. Scollan. 1997. Effects of dietary asynchrony on rumen function studied using rumen simulation continuous culture, Proceedings of the British Society of Animal Science Annual Meeting, p. 203.
  31. Leng, R. A. and J. V. Nolan. 1984. Nitrogen Metabolism in the Rumen. J. Dairy Sci. 67:1072-1089. https://doi.org/10.3168/jds.S0022-0302(84)81409-5
  32. Ludden, P. A. and Cecava. 1995. Supplemental protein sources for steers fed corn-based diets: 1. Ruminal characteristics and intestinal amino acid flows. J. Anim. Sci. 73:1466-1475.
  33. Ludden, P. A. and Cecava. 1995. Supplemental protein sources for steers fed corn-based diets: 1. Ruminal characteristics and intestinal amino acid flows. J. Anim. Sci. 73:1466-1475. https://doi.org/10.1016/0301-6226(94)90185-6
  34. Madsen, J. and T. Hvelplund. 1994. Prediction of in situ protein degradability in the rumen, Results of an European ringtest. Livest. Prod. Sci. 39:201-212. https://doi.org/10.1016/0301-6226(94)90185-6
  35. Mould, F. L., E. R. Orskov and S. O. Mann. 1983. Associative effects of mixed feeds. I. Effects of type and level of supplementation and the influence of the rumen fluid pH on cellulolysis in vivo and dry matter digestion of various roughages. Anim. Feed Sci. Technol. 10:15-30. https://doi.org/10.1016/0377-8401(83)90003-2
  36. Newbold, J. R. and S. R. Rust. 1992. Effect of asynchronous nitrogen and energy supply on growth of ruminal bacteria in batch culture. J. Anim. Sci. 70:538-546. https://doi.org/10.3168/jds.S0022-0302(88)79782-9
  37. Nocek, J. E. and J. B. Russell. 1988. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial protein synthesis and milk production. J. Dairy Sci. 71:2070-2107. https://doi.org/10.3168/jds.S0022-0302(88)79782-9
  38. NRC. 2000. Nutrient requirement of beef cattle: National Academy of Sciences. Washington, DC.
  39. Richardson, J. M., R. G. Wilkison and L. A. Sinclair. 2003. Synchrony of nutrient supply to the rumen and dietary energy source and their effects on the growth and metabolism of lambs. J. Anim. Sci. 81:1332-1347.
  40. Rotger, A., A. Ferret, S. Calsamiglia and X. Manteca. 2006. Effects of nonstructural carbohydrates and protein sources on intake, apparent total tract digestibility, and ruminal metabolism in vivo and in vitro with high-concentrate beef cattle diets. J. Anim. Sci. 84:1188-1196.
  41. Russell, J. B. 2002. Rumen microbiology and its role in ruminant nutrition. Cornell University, Ithaca, NY.
  42. Satter, L. D. and R. E. Roffler. 1977. Influence of nitrogen and carbohydrate inputs on rumen fermentation in: Recent Acvances in animal nutrition. Butterworth Inc., Boston, MA. 1977. https://doi.org/10.3168/jds.S0022-0302(98)75773-X
  43. Shabi, Z., A. Arieli, I. Bruckental, Y. Aharoni, S. Zamwel, A. Bor and H. Tagari. 1998. Effect of the synchronization of the degradation of dietary crude protein and organic matter and feeding frequency on ruminal fermentation and flow of digesta in the abomasum of dairy cows. J. Dairy Sci. 81:1991-2000. https://doi.org/10.3168/jds.S0022-0302(98)75773-X
  44. Sinclair, L. A., P. C. Garnsworthy, P. Beardsworth, P. Freeman and P. J. Buttery. 1991. The use of cytosine as a marker to estimate microbial protein synthesis in the rumen. Anim. Prod. 52:592 (Abstr). https://doi.org/10.1017/S002185960007430X
  45. Sinclair, L. A., P. C. Garnsworthy, J. R. Newbold and P. J. Buttery. 1993. Effect of synchronizing the rate of dietary energy and nitrogen release on rumen fermentation and microbial protein synthesis in the sheep. J. Agric. Sci. 120:251-263. https://doi.org/10.1017/S002185960007430X
  46. Sniffen, C. J. and P. H. Robinson. 1987. Symposium: Protein and fiber digestion, passage, and utilization in lactating cows. J. Dairy Sci. 70:425-441. https://doi.org/10.3168/jds.S0022-0302(87)80027-9
  47. Tamminga, S., W. N. Van Straalen, A. P. J. Subnel, R. G. M. Meijer, A. Steg, C. J. G. Wener and M. C. Block. 1994. The Dutch protein evaluation system: The DVE/OEB system. Livest. Prod. Sci. 40:139-155. https://doi.org/10.1016/0301-6226(94)90043-4
  48. Van Soest, P. J. 1994. Nutritional ecology of the ruminant. Second ed. Comstock Pub., Ithaca, NY, USA.
  49. Valkeners, D., A.Thewis, F. Piron and Y. Beekers. 2004. Effect of imbalance between energy and nitrogen supplies on microbial protein synthesis and nitrogen metabolism in growing double muscled Belgian Blue bulls. J. Anim. Sci. 82:1818-1825.
  50. Witt, M. W., L. A. Sinclair, R. G. Wilkinson and P. J. Buttery. 1999a. the effects of synchronizing the rate of dietary energy and nitrogen supply to the rumen on the production and metabolism of sheep: food characterization and growth and metabolism of ewe lambs given food ad libitum. Anim. Sci. 69:223-235.
  51. Witt, M. W., L. A. Sinclair, R. G. Wilkinson and P. J. Buttery. 1999b. The effects of synchronizing the rate of dietary energy and nitrogen supply to the rumen on the metabolism and growth of ram lambs given food at a restricted level. Anim. Sci. 69:627-636.
  52. Witt, M. W., L. A. Sinclair, R. G. Wilkinson and P. J. Buttery. 2000. The effects of synchronizing the rate of dietary energy and nitrogen supply to the rumen on milk production and metabolism of ewes offered grass silage based diets. Anim. Sci. 71:187-195.

Cited by

  1. A comparative study on the rumen microbial populations, hydrolytic enzyme activities and dry matter degradability between different species of ruminant vol.81, pp.6, 2010, https://doi.org/10.1111/j.1740-0929.2010.00782.x
  2. Avaliação nutricional da polpa de maçã como suplementação energética para bovinos vol.42, pp.9, 2012, https://doi.org/10.1590/S0103-84782012005000065
  3. Different true-protein sources do not modify the metabolism of crossbred Bos taurus × Bos indicus growing heifers vol.44, pp.2, 2015, https://doi.org/10.1590/S1806-92902015000200003
  4. Growth performance of Brangus steers fed graded levels of sun-dried broiler litter as a substitute for cottonseed cake vol.47, pp.6, 2015, https://doi.org/10.1007/s11250-015-0827-2
  5. Simple versus diverse pastures: opportunities and challenges in dairy systems vol.55, pp.7, 2015, https://doi.org/10.1071/AN14816
  6. Kinetics of digestion of low-quality forage grazed by beef cattle fed supplements containing increasing levels of rumen undegradable protein vol.45, pp.9, 2016, https://doi.org/10.1590/s1806-92902016000900009
  7. Review: Sugar beets as a substitute for grain for lactating dairy cattle vol.8, pp.1, 2017, https://doi.org/10.1186/s40104-017-0154-8
  8. Feeding value of whole raw soya beans as a protein supplement for beef cattle consuming low-quality forages pp.09312439, 2017, https://doi.org/10.1111/jpn.12761
  9. Effects of Synchronization of Carbohydrate and Protein Supply on Ruminal Fermentation, Nitrogen Metabolism and Microbial Protein Synthesis in Holstein Steers vol.23, pp.11, 2010, https://doi.org/10.5713/ajas.2010.10247
  10. Higher TDN level increase N excretion in Kacang Goats vol.247, pp.None, 2019, https://doi.org/10.1088/1755-1315/247/1/012016
  11. Silencing TT8 and HB12 Decreased Protein Degradation and Digestion, Microbial Synthesis, and Metabolic Protein in Relation to Molecular Structures of Alfalfa (Medicago sativa) vol.67, pp.28, 2010, https://doi.org/10.1021/acs.jafc.9b02317
  12. Effect of Two Nutritional Strategies to Balance Energy and Protein Supply in Fattening Heifers on Performance, Ruminal Metabolism, and Carcass Characteristics vol.10, pp.5, 2010, https://doi.org/10.3390/ani10050852
  13. Comparative effects of two multispecies direct-fed microbial products on energy status, nutrient digestibility, and ruminal fermentation, bacterial community, and metabolome of beef steers vol.98, pp.9, 2010, https://doi.org/10.1093/jas/skaa201
  14. Nutritional composition of herbage of different Jerusalem artichoke genotypes vol.30, pp.2, 2010, https://doi.org/10.22358/jafs/136053/2021
  15. Feed intake, digestibility, and energy contents in growing bull fed pineapple crop waste silage in different planes of nutrition vol.53, pp.1, 2010, https://doi.org/10.1007/s11250-021-02640-3