Purification and Fluorometric Analysis of Leucine-Responsive Regulatory Protein from Escherichia coli

대장균 Leucine-Responsive Regulatory Protein의 정제 및 형광분광학적 특성 분석

  • Lee, Chan-Yong (Department of Biochemistry, Chungnam National University) ;
  • Kim, Sung-Chul (Department of Biochemistry, Chungnam National University) ;
  • Seo, Cho-Hee (Department of Biochemistry, Chungnam National University)
  • Received : 2010.02.02
  • Accepted : 2010.02.28
  • Published : 2010.03.31

Abstract

We describe the construction of derivatives of wild type and mutant lrp genes that encode 6XHis-tag Lrps. These derivatives of wild type and mutant Lrp could be useful for in vitro studies including Lrp conformational changes. We show that 6XHis-tag Lrp wild type and 6XHis-tag Lrp R145W bind with similar patterns in vitro to 21 bp duplex DNA containing the consensus sequences of Lrp sites of upstream of the ilvIH operon. In addition, we report here the 6XHis-tag Lrp R145W is useful to investigate the conformational changes of Lrp in solution by using its own intrinsic fluorescence characteristics.

Leucine-responsive regulatory protein (Lrp)는 대장균 (Escherichia coli)에서 발견된 '글로벌 조절자(global regulator)'로서 Lrp-regulon이 leucine에 의하여 상이한 형태의 조절 양상을 나타낸다. 6XHis-tag 시스템으로 제조한 야생형 Lrp (Lrp Wt)와 돌연변이 Lrp (Lrp R145W) 단백질을 정제하여 그들의 생화학적 성질을 조사하였다. 이들은 gel retardation assay를 통하여 ilv 오페론의 프로모터 영역 consensus 염기서열인 21bp의 이중가닥 DNA와 결합하여 복합체를 형성하는 것을 확인 하였다. 형광성 아미노산인 tryptophan을 지닌 Lrp R145W은 단백질의 농도가 증가함에 따라 형광이 커졌으며, 아미노산 leucine에 의하여 형광성의 변화가 관찰되었다. 즉 1 ${\mu}M$의 Lrp R145W 단백질에 leucine을 첨가하여 결합시키면 약 20 ${\mu}M$까지는 형광이 증가하다가 그 이상의 농도에서는 감소하는 양상을 얻었다. 이들 실험 결과는 leucine과 Lrp의 결합 양상 및 구조변이에 관한 심층연구에 있어서 Lrp의 고유 형광성이 요긴하게 쓰일 수 있음을 시사한다.

Keywords

References

  1. Ahdya, S. and S. Garges. 1990. Positive control. J. Biol. Chem. 265, 10797-10800.
  2. Austin, E.A., J.C. Andrews, and S.A. Short. 1989. Mol. Genet. Bacteriophage, Abst p. 153. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, N.Y., USA.
  3. Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochemistry 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Brinkman, A.B., T.J.G. Ettema, W.M. de Vos, and J. Van der Oost. 2003. The Lrp family of transcriptional regulators. Mol. Microbiol. 48, 287-294. https://doi.org/10.1046/j.1365-2958.2003.03442.x
  5. Calvo, J.M. and R.G. Matthews. 1994. The leucine-responsive regulatory protein (Lrp), a global regulator of metabolism in Escherichia coli. Microbiol. Rev. 58, 466-490.
  6. Chen, S., Z. Hao, E. Bieniek, and J.M. Calvo. 2001. Modulation of Lrp activation in Escherichia coli by leucine. Effects on non-specific binding of Lrp to DNA. J. Mol. Biol. 314, 1067-1075. https://doi.org/10.1006/jmbi.2000.5209
  7. Chen, S., M.H. Rosner, and J.M. Calvo. 2001. Leucine-regulated self association of leucine-responsive regulatory protein (Lrp) from Escherichia coli. J. Mol. Biol. 312, 625-635. https://doi.org/10.1006/jmbi.2001.4955
  8. Cui, Y., M.A. Midkiff, Q. Wang, and J.M. Calvo. 1996. The leucine responsive regulatory protein (Lrp) from Escherichia coli. Stoichiometry and minimal requirements for binding to DNA. J. Biol. Chem. 271, 6611-6617. https://doi.org/10.1074/jbc.271.12.6611
  9. Cui, Y., Q. Wang, G.D. Stormo, and J.M. Calvo. 1995. A consensus sequence for binding of Lrp to DNA. J. Bacteriol. 177, 4872-4880. https://doi.org/10.1128/jb.177.17.4872-4880.1995
  10. D'Ari, R., R.T. Lin, and E.B. Newman. 1993. The leucine responsive regulatory protein (Lrp): more than a regulator? Trends Biochem. Sci. 18, 260-263. https://doi.org/10.1016/0968-0004(93)90177-O
  11. Hengge-Aronis, R. 1999. Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr. Opin. Microbiol. 2, 148-152. https://doi.org/10.1016/S1369-5274(99)80026-5
  12. Hung, S.P., P. Baldi, and G.W. Hatfield. 2002. Global gene expression profiling in Escherichia coli K12. The effect of leucine-responsive regulatory protein. J. Biol. Chem. 277, 40309- 40323. https://doi.org/10.1074/jbc.M204044200
  13. Lin, R.T., R. D'Ari, and E.B. Newman. 1990. The leucine regulon of E. coli K-12: a mutation in rblA alters expression of L-leucine-dependent metabolic operons. J. Bacteriol. 172, 4529- 4535. https://doi.org/10.1128/jb.172.8.4529-4535.1990
  14. Newman, E.B., R. D'Ari, and R. Lin. 1992. The leucine-Lrp regulon in Escherichia coli: A global response in search of a raison d'etre. Cell 68, 617-619. https://doi.org/10.1016/0092-8674(92)90135-Y
  15. Newman, E.B. and R. Lin. 1995. Leucine-responsive regulatory protein: a global regulatory gene expression in Escherichia coli. Annu. Rev. Microbiol. 49, 747-775. https://doi.org/10.1146/annurev.mi.49.100195.003531
  16. Platko, J.V. and J.M. Calvo. 1993. Mutations affecting the ability of Escherichia coli Lrp to bind DNA, activate transcription, or respond to leucine. J. Bacteriol. 175, 1110-1117. https://doi.org/10.1128/jb.175.4.1110-1117.1993
  17. Platko, J.V., D.A. Willins, and J.M. Calvo. 1990. The ilvIH operon of Escherichia coli is positively regulated. J. Bacteriol. 172, 4563-4570. https://doi.org/10.1128/jb.172.8.4563-4570.1990
  18. Rica, E., D.A. Aker, and J.M. Calvo. 1989. A protein that binds to the regulatory region of the ilvIH operon of Escherichia coli. J. Bacteriol. 171, 1658-1664. https://doi.org/10.1128/jb.171.3.1658-1664.1989
  19. Tani, T.H., A. Khodursky, R.M. Blumenthal, P.O. Brown, and R.G. Matthews. 2002. Adaption to famine: A family of stationaryphase genes revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 99, 13471-13476. https://doi.org/10.1073/pnas.212510999
  20. Willins, D.A., C.W. Ryan, J.V. Platko, and J.M. Calvo. 1991. Characterization of Lrp, and Escherichia coli regulatory protein that mediates a global response to leucine. J. Biol. Chem. 266, 10768-10774.