A Comparison of the Methane Production and the Community Structure for Methanogens in Rice Paddy and Dry Field Farming Soils

논과 밭 토양의 메탄생성과 메탄생성세균의 군집 비교

  • 김묘선 (한남대학교 생명공학과) ;
  • 김주환 (경원대학교 생명과학과) ;
  • 박경량 (한남대학교 생명공학과)
  • Received : 2010.11.01
  • Accepted : 2010.11.30
  • Published : 2010.12.31

Abstract

The purpose of this study is to investigate the soil compositions, methane production, the number of methanogens, and the community structure of methanogens in rice paddy soils and dry field farming soils in the summer and autumn seasons. As a result of the analysis of soil compositions, any regular tendency to increase or decrease has not been found in most soil samples due to the change of seasons. It has also been found that more methanogens exist in the rice paddy soil that utilize organic farming practices and emptiness farming practices than in the dry field farming soil. The fewer numbers of methanogens utilizing the acetate have been found than those of the methanogens utilizing the hydrogen or the formate. In an experiment of methane production, the methanes increased for two weeks when the acetate was added, but they continued to increase for seven weeks more when the formate and the hydrogen were added. In the phylogenetic analysis using the mcrA gene, the methanogens had diverse clusters in the rice paddy soil, whereas the methanogens were concentrated only in a few clusters in the dry field farming soil.

여름과 가을의 논과 밭 토양의 토양성분과 메탄 생성, 메탄 생성세균의 분포, 그리고 메탄생성세균의 군집구조를 조사하였다. 토양성분을 분석한 결과, 전체적으로 계절에 따라 큰 변화는 나타나지 않았다. 메탄생성세균의 분포조사에서 밭 토양보다 유기농법과 무농약농법을 사용하는 논 토양에 메탄생성세균이 더 많이 존재하였고, 수소와 포름산을 이용하는 메탄생성세균에 비해 아세트산을 이용하는 메탄생성세균 수는 상대적으로 적은 것으로 확인되었다. 메탄생성 실험에서 아세트산을 첨가한 경우 배양 2주까지 메탄생성이 증가되었고, 포름산과 수소를 첨가한 경우 배양 7주까지 메탄생성 양이 증가되었다. mcrA 유전자를 이용한 계통학적 분석에서 논에는 다양한 메탄 생성세균의 cluster가 분포하는 반면, 밭에는 일부 cluster에 집중되어 분포함을 확인하였다.

Keywords

References

  1. Aulakh, M.S., J. Bodenbender, R. Wassmann, and H. Rennenberg. 2000. Methane transport capacity of rice plants. II. Variations among different rice cultivars and relationship with morphological characteristics. Nutr. Cycl. Agroecosyst. 58, 367-375. https://doi.org/10.1023/A:1009839929441
  2. Castro, H.F. 2003. Microbial ecology of anaerobic terminal carbon mineralization in Everglades soils, with emphasis on sulfate reducing prokaryotic assemblages. Ph. D. thesis. University of Florida, Gainesville, Florida, USA.
  3. Castro, H., A. Ogram, and K.R. Reddy. 2004. Phylogenetic characterization of methanogenic assemblages in eutrophic and oligotrophic areas of the Florida Everglades. Appl. Environ. Microbiol. 70, 6559-6568. https://doi.org/10.1128/AEM.70.11.6559-6568.2004
  4. Chauhan, A., A. Ogram, and K.R. Reddy. 2004. Syntrophicmethanogenic associations along a nutrient gradient in the Florida Everglades. Appl. Environ. Microbiol. 70, 3475-3484. https://doi.org/10.1128/AEM.70.6.3475-3484.2004
  5. Escoffier, S., B. Ollivier, J. LeMer, J. Garcin, and P. Roger. 1998. Evidence and quantification of thiosulfate reducers unable to reduce sulfate in rice field soils. Eur. J. Soil Biol. 34, 69-74. https://doi.org/10.1016/S1164-5563(99)90003-1
  6. Goffredi, S.K., R. Wilpiszeski, R. Lee, and V.J. Orphan. 2008. Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California. ISME J. 2, 204-220. https://doi.org/10.1038/ismej.2007.103
  7. Harada, N., M. Nishiyama, and S. Matsumoto. 2001. Inhibition of methanogens increases photo-dependent nitrogenase activities in anoxic paddy soil amended with rice straw. FEMS Microbiol. Ecol. 35, 231-238. https://doi.org/10.1111/j.1574-6941.2001.tb00808.x
  8. Hook, S.E., K.S. Northwood, A.D.G. Wright, and B.W. McBride. 2009. Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl. Environ. Microbiol. 75, 374-380. https://doi.org/10.1128/AEM.01672-08
  9. Kim, H.S., J.S. Cho, and K.R. Park. 2009. Merhane production and T-RFLP patterns of methanogenic bacteria dependent on agricultural methods. Kor. J. Microbiol. 45, 17-25.
  10. Krakat, N., S. Schmidt, and P. Scherer. 2010. Mesophilic fermentation of renewable biomass: Does hydraulic retention time regulate methanogen diversity. Appl. Environ. Microbiol. 76, 6322-6326. https://doi.org/10.1128/AEM.00927-10
  11. Lamendella, R., J.W. Santo Domingo, A.C. Yannarell, S. Ghosh, G. Di Giovanni, R.I. Mackie, and D.B. Oerther. 2009. Evaluation of swine-specific PCR assays used for fecal source tracking and analysis of molecular diversity of swine-specific "Bacteroidales" populations. Appl. Environ. Microbiol. 75, 5787-5796. https://doi.org/10.1128/AEM.00448-09
  12. Lee, K.B. 1997. Influence of different rice varieties on emission of methane in soil and exudation of carbohydrates in rhizosphere. J. Kor. Soc. Soil Sci. Fert. 30, 257-264.
  13. Lee, K.B. 1999. Methane emission among rice ecotypes in Korean paddy soil. Korean J. Environ. Agricul. 18, 1-5.
  14. Li, J., M. Wang, H. Yao, and Y. Wang. 2002. New estimates of methane emissions from Chinese rice paddies. Nutr. Cycl. Agroecosyst. 64, 33-42. https://doi.org/10.1023/A:1021184314338
  15. Lu, W.F., W. Chen, B.W. Duan, W.M. Guo, R.S. Lantin, R. Wassmann, and H.U. Neue. 2000. Methane emissions and mitigation options in irrigated rice fields in southeast China. Nutr. Cycl. Agroecosyst. 58, 65-73. https://doi.org/10.1023/A:1009830232650
  16. Lueders, T., K.J. Chin, R. Conrad, and M. Friedrich. 2001. Molecular analysis of methyl-coenzyme M reductase alphasubunit (mcrA) genes in rice field soil and enrichment cultures reveal the methnogenic phenotype of a novel archaeal lineage. Environ. Microbiol. 3, 194-204. https://doi.org/10.1046/j.1462-2920.2001.00179.x
  17. Luton, P.E., J.M. Wayne, R.J. Sharp, and P.W. Riley. 2002. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148, 3521-3530. https://doi.org/10.1099/00221287-148-11-3521
  18. Mitra, A.P., P.K. Gupta, and C. Sharma. 2002. Refinement in methodologies for Methane budget estimation from Rice paddies. Nutr. Cycl. Agroecosyst. 64, 147-155. https://doi.org/10.1023/A:1021180213429
  19. Nakagawa, F., N. Yoshida, A. Sugimoto, E. Wada, T. Yoshioka, S. Ueda, and P. Vijarnsorn. 2002. Stable isotope and radiocarbon compositions of methane emitted from tropical rice paddies and swamps in Southern Thailand. Biogeochemistry 61, 1-19. https://doi.org/10.1023/A:1020270032512
  20. Oremland, R.S. and D.G. Capone. 1988. Use of "specific inhibitors" in biogeochemistry and microbial ecology. Adv. Microbial Ecol. 10, 285-383.
  21. Orphan, V.J., L.L. Jahnke, T. Embaye, K.A. Turk, A. Pernthaler, R.E. Summons, and D.J. Des Marais. 2008. Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California. Geobiology 6, 376-393. https://doi.org/10.1111/j.1472-4669.2008.00166.x
  22. Pei, C.X., S.Y. Mao, Y.F. Cheng, and W.Y. Zhu. 2010. Diversity, abundance and novel 16S rRNA gene sequences of methanogens in rumen liquid, solid and epithelium fractions of Jinnan cattle. Animal 4, 20-29. https://doi.org/10.1017/S1751731109990681
  23. Shin, Y.K. and S.H. Yun. 2000. Varietal differences in methane emission from Korean rice cultivars. Nutr. Cycl. Agroecosyst. 58, 315-319. https://doi.org/10.1023/A:1009819324897
  24. Steinberg, L.M. and J.M. Regan. 2008. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl. Environ. Microbiol. 74, 6663-6671. https://doi.org/10.1128/AEM.00553-08
  25. Swift, M.J. 1982. Microbial succession during the decay of organic matter. In R.G. Burns and J.H. Slater (eds.) Experimental microbial ecology, pp. 164-177. Blackwell, Oxford.
  26. Thauer, R.K. 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology-UK. 144, 2377-2406. https://doi.org/10.1099/00221287-144-9-2377
  27. Touzel, J.P. and G. Albagnac. 1983. Isolation and characterization of Methanococcus mazei strani $MC_{3}$. FEMS Microbiol. Lett. 16, 241-245. https://doi.org/10.1111/j.1574-6968.1983.tb00295.x
  28. Wang, Z.Y., Y.C. Xu, Z. Li, Y.X. Guo, R. Wassmann, H.U. Neue, R.S. Lantin, L.V. Buendia, Y.P. Ding, and Z.Z. Wang. 2000. A four-year record of methane emissions from irrigated rice fields in the Beijing region of China. Nutr. Cycl. Agroecosyst. 58, 55-63. https://doi.org/10.1023/A:1009878115811
  29. Ward, D.M. and M.R. Winfrey. 1985. Interactions between methanogenic and sulfate reducing bacteria in sediments, pp. 141-179. In H.W. Jannasch and P.J. Williams (eds.), Advances in Aquatic Microbiol. Academic Press, London, UK.
  30. Wassmann, R. and M.S. Aulakh. 2000. The role of rice plants in regulating mechanisms of methane missions. Biol. Fertil. Soils 31, 20-29. https://doi.org/10.1007/s003740050619
  31. Wind, T. and R. Conrad. 1997. Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochem. 37, 253-278. https://doi.org/10.1023/A:1005760506957