Antimicrobial Susceptibility of Staphylococci sp. Isolated from Bovine Milk

우유에서 분리된 포도상구균속 세균의 항생제 감수성

  • Received : 2010.11.19
  • Accepted : 2010.12.10
  • Published : 2010.12.31

Abstract

The prevalence and antimicrobial susceptibilities of Staphylococcal isolates from bovine milk samples were assessed. From January 2009 to October 2009, a total 287 bovine milk samples were randomly collected from 15 stock raising farms located in northern area of Kyunggi province and cultured for the presence of Staphylococci spp. A total 79 staphylococcal isolates were recovered from the milk samples. The predominant isolates were S. aureus (43.03%) and S. chromogenes (24.05%). Antimicrobial resistance patterns of 79 Staphylococcal isolates against ampicillin, chloramphenicol, ciprofloxacin, erythromycin, gentamicin, oxacillin, teicoplanin, tetracyclin, and vancomycin were tested. Staphylococcal isolates revealed the highest resistance to ampicillin (56.96%) and oxacillin (39.23%). Of 31 oxacillin resistance strains, 8 strains carry mecA gene which is responsible for methicillin resistance.

본 연구에서는 우유 시료에서 포도상구균속 세균을 분리하고 각 균종을 동정하고 항생제 감수성을 검사하였다. 2009년 1월부터 2009년 10월까지 경기 북부지역 15개 축산 농가에서 287개의 우유 시료를 수집하여 총 79개의 포도상구균속 세균을 분리 동정하였다. 가장 우세한 비율로 분포하는 세균은 S. aurues (43.03%)였으며 coagulase negative staphylococci (CNS) 중에서는 S. chromogenes (24.05%)가 가장 우세하게 분포하였다. 9종의 항생제에(ampicillin, chloramphenicol, ciprofloxacin, erythromycin, gentamicin, oxacillin, teicoplanin, tetracyclin, vancomycin) 대한 감수성 검사를 실시한 결과 대다수의 항생제에 대한 감수성 비율이 높았으나 ampicillin (56.96%)과 oxacillin (39.23%)에 대한 내성 균주의 비율이 높게 나타났다. 31종의 oxacillin 저항성균주 중 8개의 균주가 methicillin 내성에 관여하는 mecA 유전자를 보유하고 있었다.

Keywords

References

  1. Anon, K. 1995. Results of the Uruguay round of the multilateral trade negotiations 1993: agreement on application of sanitary and phytosanitary measures. pp. 26-47. World Trade Organisation, Genova.
  2. Anyliffe, G.A.J. 1997. The progressive intercontinental spread of methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis., 24 (Suppl. 1), 4-49.
  3. Bal, E.B., S. Bayar, and M.A. Bal. 2010. Antimicrobial susceptibilities of coagulase-negative staphylococci (CNS) and streptococci from bovine subclinical mastitis cases. J. Microbiol. 48, 267-274. https://doi.org/10.1007/s12275-010-9373-9
  4. CLSI. 2007. Performance standards for antimicrobial susceptibility testing: seventeenth informational supplement, pp. 53-59. Clinical and Laboratory Standards Institute.
  5. Codex Aimentarius Commission. 1999. Principles and guidelines for the conduct of microbiological risk assessment, pp. 1-45. CAC/GL30. Geneva.
  6. DANMAP. 2003. Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animal, foods and humans in Denmark, pp. 1-85.
  7. Engemann, J.J., Y. Carmeli, S.E. Cosgrove, V.G. Fowler, M.Z. Bronstein, S.L. Trivette, J.P. Briggs, D.J. Sexton, and K.S. Kaye. 2003. The burden of Staphylococcus aureus infections on hospitals in the United States: an analysis of the 2000 and 2001 Nationwide Inpatient Sample Database. Clin. Infect. Dis. 36, 592-598. https://doi.org/10.1086/367653
  8. FAO/OIE/WHO. 2004. Joint FAO/OIE/WHO 2nd workshop on non-human antimicrobial usage and antimicrobial resistance; management options, executive summary, Olso, Norway.
  9. Gentilini, E., G. Denamiel, A. Betancor, M. Rebuelto, M.R. Fermepin, and R.A. De Torrest. 2002. Antimicrobial susceptibility of coagulase-negative staphylococci isolated from bovine mastitis in Argentina. J. Dairy Sci. 85, 1913-1917. https://doi.org/10.3168/jds.S0022-0302(02)74267-7
  10. Gillespie, B.E., S.I. Headrick, S. Boonyayatra, and S.P. Oliver. 2009. Prevalence and persistence of coagulase-negative Staphylococcus species in three dairy research herds. Vet. Microbiol. 134, 65-72. https://doi.org/10.1016/j.vetmic.2008.09.007
  11. Hwang, I.G., H.S. Kwak, and S.H. Yoon. 2010. Methicillinresistant Staphylococcus aureus (MRSA) as a foodborne biological hazard. Safe Food. 5, 26-35.
  12. Hwang, S.Y., B.Y. Moon, Y.H. Park, M.J. Lee, H.A. Bang, K.H. Rhim, J.S. Kim, N.H. Che, and W.C. Lee. 2010. Comparative study on the epidemiology of food-borne disease outbreaks in Korea and Japan. J. Fd. Hyg. Safety. 25, 129-132.
  13. Ito, T. and K. Hiramatsu. 1998. Acquisition of methicillin resistance and progression of multiantibiotic resistance in methicillin- resistant Staphylococcus aureus. Yunsei Medical Journal. 39, 526-533. https://doi.org/10.3349/ymj.1998.39.6.526
  14. Kim, H.J., Y.H. Park, and M.S. Koo. 2010. Antimicrobial resistance and risk assessment. Safe Food. 5, 14-19.
  15. Kuhl, S.A., P.A. Pattee, and N.J. Baldwin. 1978. Chromosomal map location of the methicillin resistance determinant in Staphylococcus aureus. J. Bacteriol. 135, 460-465.
  16. Lee, Y.S., C.K. Kim, M.S. Kim, D.G. Yong, K.W. Lee, and Y.S. Chong. 2007. Detection of mecA in strains with oxacillin and cefoxitin disk tests for detection of methicillin-resistant Staphylococcus. Kor. J. Lab. Med. 27, 276-280. https://doi.org/10.3343/kjlm.2007.27.4.276
  17. Mathews, A.A., M. Thomas, B. Appalaraju, and J. Jayalakshmi. 2010. Evaluation and comparison of tests to detect methicillin resistant S. aureus. Indian J. Pathol. Microbiol. 53, 79-82. https://doi.org/10.4103/0377-4929.59189
  18. Moon, J.S., A.R. Lee, H.M. Kang, E.S. Lee, Y.S. Joo, Y.H. Park, M.N. Kim, and H.C. Koo. 2007. Antibiogram and coagulase diversity in staphylococcal enterotoxin-producing Staphylococcus aureus from bovine mastitis. J. Dairy Sci. 90, 1716-1724. https://doi.org/10.3168/jds.2006-512
  19. NORM. 2003. NORM-VET: Usage of antimicrobial agents and occurrence of antimicrobial resistance in Norway, pp. 1-72.
  20. Noskin, G.A., R.J. Rubin, J.J. Schentag, J. Kluytmans, E.C. Hedblom, M. Smulders, E. Lapetina, and E. Gemmen. 2005. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Arch. Intern. Med. 165, 1756-1761. https://doi.org/10.1001/archinte.165.15.1756
  21. OIE. 2001. European Scientific Conference. The use of antibiotics in animal ensuring the protection of public health. pp. 8-142.
  22. Oliver, S.P., B.M. Jayarao, and R.A. Almeida. 2005. Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog. Dis. 2, 15-29.
  23. Oliver, S.P., K.J. Boor, S.C. Murphy, and S.E. Murinda. 2009. Food safety hazards associated with consumption of raw milk. Foodborne Pathog. Dis. 26, 793-806.
  24. Rajala-Schultz, P.J., A.H. Torres, F.J. Degraves, W.A. Gebreyes, and P. Patchanee. 2009. Antimicrobial resistance and genotypic characterization of coagulase-negative staphylococci over the dry period. Vet. Micobiol. 134, 55-64.
  25. Sampimon, O.C., J.C. Vernooij, D.J. Mevius, and J. Sol. 2007. Sensitivity to various antibiotics of coagulase-negative staphylococci isolated from samples of milk from Dutch dairy cattle. Tijdschr Diergeneeskd 132, 200-204.
  26. Sawant A.A., B.E. Gillespie, and S.P. Oliver. 2009. Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk. Vet. Microbiol. 134, 73-81. https://doi.org/10.1016/j.vetmic.2008.09.006
  27. Srinivasan, V., A.A. Sawant, B.E. Gillespie, S.J. Headrick, L. Ceasaris, and S.P. Oliver. 2006. Prevalence of enterotoxin and toxic shock syndrome toxin genes in Staphylococcus aureus isolated from milk of cows with mastitis. Foodborne Pathog. Dis. 3, 274-283. https://doi.org/10.1089/fpd.2006.3.274
  28. Stacey, L.K., L.M. Stanley, N. Mariani, and B. Tom. 2003. The Resistance Phenomenon in Microbes and Infectious Disease Vectors: Implications for Human Health and Strategies for Containment -- Workshop Summary. Appendix D: Executive Summary: WHO Report. pp. 256-273.
  29. Woods, G.L. 1995. In vitro testing of antimicrobial agents. Infect. Dis. Clin. North. 9, 463-481.
  30. Yoon, J.C., J.C. Lee, S.K. Kim, T.S. Park, J.T. Kim, C.G. Lee, and C.Y. Lee. 2004. Prevalence of isolated microorganisms and antimicrobial susceptibility from half milk in dairy goats. Korea J. Vet. Res. 44, 151-157.