Characterization of the Biosurfactant-Producing Bacterium, Pseudoalteromonas sp. HK-3 Isolated from the Crude-Oil Contaminated Areas

원유로 오염된 지역으로부터 분리한 생물계면활성제 생산균주, Pseudoalteromonas sp. HK-3의 특성조사

  • Cho, Su-Hee (Department of Biotechnology, Soonchunhyang University) ;
  • Oh, Kye-Heon (Department of Biotechnology, Soonchunhyang University)
  • 조수희 (순천향대학교 생명공학과) ;
  • 오계헌 (순천향대학교 생명공학과)
  • Received : 2010.12.03
  • Accepted : 2010.12.20
  • Published : 2010.12.31

Abstract

The purpose of this work was to investigate the characteristics of a biosurfactant-producing bacterium isolated from crude-oil contaminated soils. During the incubation of strain HK-3 with 1% crude-oil, bacterial growth pattern, the amount of biosurfactant production, and pH changes were monitored. In order to examine the effect of supplemented carbons on the production of biosurfactant, cultivation of HK-3 cells in BH media with different carbons (e.g. glucose, dextrose, mannitol, citrate, or acetate) revealed that the production of biosurfactant reached the maximal level at the 72 h incubation with mannitol, which the area of clear zone was measured to approximately 7.64 $cm^2$. Identification test using the BIOLOG system, morphology study based on scanning electron microscopy and the 16S rRNA sequence-based phylogenetic analysis assigned strain HK-3 to a Pseudoalteromonas species, designated as Pseudoalteromonas sp. HK-3 which was registered in GenBank as [FJ477041].

본 연구의 목적은 원유에 오염된 지역의 토양시료로부터 분리한 생물계면활성제 생산균주의 특성을 조사하기 위하여 실시하였다. 1% 원유를 포함하는 배지에서 균주 HK-3의 배양기간 동안, 생장, 생물계면활성제의 생산, pH의 변화 등을 조사하였다. 생물계면활성제의 생산능력이 뛰어난 균주인 HK-3를 선별하여, 이 균주의 배양기간에 따른 생장 변화와 생물계면활성제의 생산량, 그리고 pH에 대하여 관찰하였다. HK-3는 배양 36시간이 경과하였을 때, 가장 많은 양의 생물계면활성제를 생산하였다. 생물계면활성제 생산에 대한 부가탄소원의 효과를 알아보기 위하여 HK-3를 다른 부가탄소원(예, glucose, dextrose, mannitol, citrate, acetate)과 함께 배지에서 배양하였다. 그 결과, 생물계면활성제의 최대생산량은 mannitol을 포함하는 BH 고체평판배지에서 관찰되었으며, 투명대의 면적은 직경은 약 7.64 cm2로 측정되었다. 분리균주의 생리학적 및 생화학적 특성을 조사하였으며, 주사전자현미경을 통하여 불규칙한 막대형의 세균으로 관찰되었다. BIOLOG 시스템과 16S rRNA 염기서열을 이용한 계통유전학적 분석을 통하여 동정하여 Pseudoalteromons 종으로 확인되어 Pseudoalteromons sp. HK-3로 명명하였으며, GenBank에 [FJ477041]로 등록하였다.

Keywords

References

  1. Ahn, Y.H., B.G. Jung, N.C. Sung, and Y.O. Lee. 2009. Characterization of petroleum hydrocarbon degradation by a Sphingomonas sp. 3Y isolated from a diesel-contaminated site. J. Science 19, 659-663.
  2. Baek, K.H., H.S. Kim, I.S. Lee, H.M. Oh, and B.D. Yoon. 2003. Effects of oil contamination levels and microbial size on hydrocarbon biodegradation. Kor. J. Microbiol. Biotechnol. 31, 408-412.
  3. Cameotra, S.S. and P. Singh. 2008. Bioremediation of oil sludge using crude biosurfactants. Int. Biodeterio. Biodegrad. 62, 274-280. https://doi.org/10.1016/j.ibiod.2007.11.009
  4. Cha, J.Y., S.Y. Chung, Y.S. Cho, Y.L. Choi, B.K. Kim, and Y.C. Lee. 1999. Characterization of crude oil degradation by Klebsiella sp. KCL-1 isolated from sea water. Kor. J. Appl. Microbiol. Biotechnol. 27, 452-457.
  5. Coulon, F., B.A. McKew, A.M. Osborn, T.J. McGenity, and K.N. Timmis. 2007. Effects of temperature and biostimulation on oil-degrading microbial communities in temperate. Environ. Microbiol. 9, 177-186. https://doi.org/10.1111/j.1462-2920.2006.01126.x
  6. da Cunha, C.D., A.S. Rosado, G.V. Sebastian, L. Seldin, and I. von der Weid. 2006. Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil. Appl. Microbiol. Biotechnol. 73, 949-959. https://doi.org/10.1007/s00253-006-0531-2
  7. Das, K. and A.K. Mukherjee. 2007. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour. Technol. 98, 1339-1345. https://doi.org/10.1016/j.biortech.2006.05.032
  8. Deziel, E., G. Paquette, R. Villemur, F. Lepine, and J.G. Bisaillon. 1996. Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 62, 1908-1912.
  9. Freedman, B. 1995. Environmental ecology. 2nd ed. pp. 159-188. Academic Press, San Diego, California, USA.
  10. Iwona, B.B. and C.G. Christine. 1999. Recent advances in the study of biocorrosion-an overview. Revista de Microbiologia 30, 177-190.
  11. Joshi, S., C. Bharucha, S. Jha, S. Yadav, A. Nerurkar, and A.J. Desai. 2008. Biosurfactant production using molasses and whey thermophilic conditions. Bioresour. Technol. 99, 159-199.
  12. Kim, S.H., S.C. Lee, J.S. Yoo, W.H. Joo, S.Y. Chung, and Y.L. Choi. 2004. Characterization of oil-degradation biosurfactant produced by Bacillus sp. TBM40-3. J. Kor. Soc. Appl. Biol. Chem. 47, 170-175.
  13. Koch, A.K., O. Kappeli, A. Fiechter, and J. Reiser. 1991. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J. Bacteriol. 173, 4212-4219. https://doi.org/10.1128/jb.173.13.4212-4219.1991
  14. Lal, B. and S. Khanna. 1996. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J. Appl. Bacteriol. 81, 355-362.
  15. Leacock, E. 2005. The Exxon Valdez oil spill. pp. 34-46. Facts on file Inc. New York, N.Y., USA.
  16. Lee, S.C., S.J. Lee, S.H. Kim, I.H. Park, Y.S. Lee, S.Y. Chung, and Y.L. Choi. 2008. Characterization of new biosurfactant produced by Klebsiella sp. Y6-1 isolated from waste soybean oil. Bioresour. Technol. 99, 2288-2292. https://doi.org/10.1016/j.biortech.2007.05.020
  17. Lin, X., B. Yang, J. Shen, and N. Du. 2009. Biodegradation of crude oil by an arctic psychrotrophic bacterium Pseudoalteromonas sp. P29. Curr. Microbiol. 59, 341-345. https://doi.org/10.1007/s00284-009-9440-9
  18. Longeon, A., J. Peduzzi, M. Barthelemy, S. Corre, J.L. Nicolas, and M. Guyot. 2004. Purification and partial identification of novel antimicrobial protein from marine bacterium Pseudoalteromonas Species Strain X153. Mar. Biotechnol. 6, 633-641. https://doi.org/10.1007/s10126-004-3009-1
  19. McKew, B.A., F. Coulon, M.M. Yakimov, R. Denaro, M. Genocese, C.J. Smith, A.M. Osborn, K.N. Timmis, and T.J. McGenity. 2007. Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environ. Microbiol. 9, 1562-1571. https://doi.org/10.1111/j.1462-2920.2007.01277.x
  20. Mukred, A.M., A.A. Hamid, A. Hamzah, and W.M. Wan Yusoff. 2008. Development of three bacteria consortium for the bioremediation of crude petroleum-oil in contaminated water. J. Biol. Sci. 8, 73-79.
  21. Ochsner, U.A., A.K. Koch, A. Fiechter, and J. Reiser. 1994. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J. Bacteriol. 176, 2044-2054. https://doi.org/10.1128/jb.176.7.2044-2054.1994
  22. Sathishkumar, M., A.R. Binupriya, S.H. Baik, and S.E. Yun. 2008. Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. Clean 36, 92-96.
  23. Siegmund I. and F. Wagner. 1991. New method for detecting rhamnolipids excreted by pseudomonas species during growth on mineral agar. Biotechnol. Tech. 5, 265-268. https://doi.org/10.1007/BF02438660