DOI QR코드

DOI QR Code

Phosphatidylinositol 4-phosphate 5-kinase ${\alpha}$ is induced in ganglioside-stimulated brain astrocytes and contributes to inflammatory responses

  • Lee, Sang-Yoon (Neuroscience Graduate Program Ajou University School of Medicine) ;
  • Kim, Bo-Kyung (Neuroscience Graduate Program Ajou University School of Medicine) ;
  • Yoon, Sa-Rah (Department of Microbiology Ajou University School of Medicine) ;
  • Kim, Yeon-Joo (Chronic Inflammatory Disease Research Center Ajou University School of Medicine) ;
  • Liu, Tian (Neuroscience Graduate Program Ajou University School of Medicine) ;
  • Woo, Joo-Hong (Chronic Inflammatory Disease Research Center Ajou University School of Medicine) ;
  • Chwae, Yong-Joon (Department of Microbiology Ajou University School of Medicine) ;
  • Joe, Eun-Hye (Neuroscience Graduate Program Ajou University School of Medicine) ;
  • Jou, Il-O (Chronic Inflammatory Disease Research Center Ajou University School of Medicine)
  • Accepted : 2010.08.18
  • Published : 2010.09.30

Abstract

In brain tissue, astrocytes play defensive roles in central nervous system integrity by mediating immune responses against pathological conditions. Type I phosphatidylinositol 4-phosphate 5-kinase ${\alpha}$ ($PIP5K{\alpha}$) that is responsible for production of phosphatidylinositol 4,5-bisphosphate ($PI[4,5]P_2$) regulates many important cell functions at the cell surface. Here, we have examined whether $PIP5K{\alpha}$ is associated with astrocyte inflammatory responses. Gangliosides are releasable from damaged cell membranes of neurons and capable of inducing inflammatory responses. We found that treatment of primary cultured astrocytes with gangliosides significantly enhanced $PIP5K{\alpha}$ mRNA and protein expression levels. $PI(4,5)P_2$ imaging using a fluorescent tubby (R332H) expression as a $PI(4,5)P_2$-specific probe showed that ganglioside treatment increased $PI(4,5)P_2$ level. Interestingly, microRNA-based $PIP5K{\alpha}$ knockdown strongly reduced ganglioside-induced transcription of proinflammatory cytokines IL-$1{\beta}$ and $TNF{\alpha}$. $PIP5K{\alpha}$ knockdown also suppressed ganglioside-induced phosphorylation and nuclear translocation of NF-${\kappa}B$ and the degradation of $l{\kappa}B-{\alpha}$, indicating that $PIP5K{\alpha}$ knockdown interfered with the ganglioside-activated NF-${\kappa}B$ signaling. Together, these results suggest that $PIP5K{\alpha}$ is a novel inflammatory mediator that undergoes upregulation and contributes to immune responses by facilitating NF-${\kappa}B$ activation in ganglioside-stimulated astrocytes.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation, Chronic Inflammatory Disease Research Center at Ajou University, Korea Research Foundation, Ajou University School of Medicine

References

  1. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4:499-511 https://doi.org/10.1038/nri1391
  2. Ariga T, McDonald MP, Yu RK. Role of ganglioside metabolism in the pathogenesis of Alzheimer's disease--a review. J Lipid Res 2008;49:1157-75 https://doi.org/10.1194/jlr.R800007-JLR200
  3. Blennow K, Davidsson P, Wallin A, Fredman P, Gottfries CG, Mansson JE, Svennerholm L. Differences in cerebrospinal fluid gangliosides between "probable Alzheimer's disease" and normal aging. Aging (Milano) 1992;4:301-6
  4. Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature 2006;443:651-7 https://doi.org/10.1038/nature05185
  5. Doughman RL, Firestone AJ, Anderson RA. Phosphatidylinositol phosphate kinases put PI4,5P(2) in its place. J Membr Biol 2003;194:77-89 https://doi.org/10.1007/s00232-003-2027-7
  6. Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007;28:138-45 https://doi.org/10.1016/j.it.2007.01.005
  7. Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, McMurray D, Smith DE, Sims JE, Bird TA, O'Neill LA. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 2001;413:78-83 https://doi.org/10.1038/35092578
  8. Horng T, Barton GM, Flavell RA, Medzhitov R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 2002;420:329-33 https://doi.org/10.1038/nature01180
  9. Ishihara H, Shibasaki Y, Kizuki N, Katagiri H, Yazaki Y, Asano T, Oka Y. Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4-phosphate 5-kinase. J Biol Chem 1996;271:23611-4 https://doi.org/10.1074/jbc.271.39.23611
  10. Ishihara H, Shibasaki Y, Kizuki N, Wada T, Yazaki Y, Asano T, Oka Y. Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. J Biol Chem 1998;273:8741-8 https://doi.org/10.1074/jbc.273.15.8741
  11. Jou I, Lee JH, Park SY, Yoon HJ, Joe EH, Park EJ. Gangliosides trigger inflammatory responses via TLR4 in brain glia. Am J Pathol 2006;168:1619-30 https://doi.org/10.2353/ajpath.2006.050924
  12. Jung JU, Ko K, Lee DH, Ko K, Chang KT, Choo YK. The roles of glycosphingolipids in the proliferation and neural differentiation of mouse embryonic stem cells. Exp Mol Med 2009;41:935-45 https://doi.org/10.3858/emm.2009.41.12.099
  13. Kagan JC, Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 2006;125:943-55 https://doi.org/10.1016/j.cell.2006.03.047
  14. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002;2:725-34 https://doi.org/10.1038/nri910
  15. Lund S, Christensen KV, Hedtjarn M, Mortensen AL, Hagberg H, Falsig J, Hasseldam H, Schrattenholz A, Porzgen P, Leist M. The dynamics of the LPS triggered inflammatory response of murine microglia under different culture and in vivo conditions. J Neuroimmunol 2006;180: 71-87 https://doi.org/10.1016/j.jneuroim.2006.07.007
  16. Mao YS, Yin HL. Regulation of the actin cytoskeleton by phosphatidylinositol 4-phosphate 5 kinases. Pflugers Arch Min KJ, Pyo HK, Yang MS, Ji KA, Jou I, Joe EH. Gangliosides activate microglia via protein kinase C and NADPH oxidase. Glia 2004;48:197-206 https://doi.org/10.1002/glia.20069
  17. Min KJ, Pyo HK, Yang MS, Ji KA, Jou I, Joe EH. Gangliosides activate microglia via protein kinase C and NADPH oxidase. Glia 2004;48:197-206 https://doi.org/10.1002/glia.20069
  18. Padron D, Wang YJ, Yamamoto M, Yin H, Roth MG. Phosphatidylinositol phosphate 5-kinase Ibeta recruits AP-2 to the plasma membrane and regulates rates of constitutive endocytosis. J Cell Biol 2003;162:693-701 https://doi.org/10.1083/jcb.200302051
  19. Pawate S, Shen Q, Fan F, Bhat NR. Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res 2004;77:540-51 https://doi.org/10.1002/jnr.20180
  20. Posse de Chaves E, Sipione S. Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett 2010;584:1748-59 https://doi.org/10.1016/j.febslet.2009.12.010
  21. Pyo H, Joe E, Jung S, Lee SH, Jou I. Gangliosides activate cultured rat brain microglia. J Biol Chem 1999;274:34584-9 https://doi.org/10.1074/jbc.274.49.34584
  22. Quinn KV, Behe P, Tinker A. Monitoring changes in membrane phosphatidylinositol 4,5-bisphosphate in living cells using a domain from the transcription factor tubby. J Physiol 2008;586:2855-71 https://doi.org/10.1113/jphysiol.2008.153791
  23. Rameh LE, Tolias KF, Duckworth BC, Cantley LC. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 1997;390:192-6 https://doi.org/10.1038/36621
  24. Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W. IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J Biol Chem 1999;274: 30353-6 https://doi.org/10.1074/jbc.274.43.30353
  25. Santagata S, Boggon TJ, Baird CL, Gomez CA, Zhao J, Shan WS, Myszka DG, Shapiro L. G-protein signaling through tubby proteins. Science 2001;292:2041-50 https://doi.org/10.1126/science.1061233
  26. Sasaki J, Sasaki T, Yamazaki M, Matsuoka K, Taya C, Shitara H, Takasuga S, Nishio M, Mizuno K, Wada T, Miyazaki H, Watanabe H, Iizuka R, Kubo S, Murata S, Chiba T, Maehama T, Hamada K, Kishimoto H, Frohman MA, Tanaka K, Penninger JM, Yonekawa H, Suzuki A, Kanaho Y. Regulation of anaphylactic responses by phosphatidylinositol phosphate kinase type I {alpha}. J Exp Med 2005;201:859-70 https://doi.org/10.1084/jem.20041891
  27. Schwab C, McGeer PL. Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J Alzheimers Dis 2008;13:359-69 https://doi.org/10.3233/JAD-2008-13402
  28. Sonnino S, Chigorno V. Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. Biochim Biophys Acta 2000;1469:63-77 https://doi.org/10.1016/S0005-2736(00)00210-8
  29. Suh BC, Hille B. Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol 2005;15:370-8 https://doi.org/10.1016/j.conb.2005.05.005
  30. Szentpetery Z, Balla A, Kim YJ, Lemmon MA, Balla T. Live cell imaging with protein domains capable of recognizing phosphatidylinositol 4,5-bisphosphate; a comparative study. BMC Cell Biol 2009;10:67 https://doi.org/10.1186/1471-2121-10-67
  31. Szymanska E, Korzeniowski M, Raynal P, Sobota A, Kwiatkowska K. Contribution of PIP-5 kinase Ialpha to raft-based FcgammaRIIA signaling. Exp Cell Res 2009;315: 981-95 https://doi.org/10.1016/j.yexcr.2009.01.023
  32. Takenawa T, Itoh T. Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim Biophys Acta 2001;1533:190-206 https://doi.org/10.1016/S1388-1981(01)00165-2
  33. Teismann P, Schulz JB. Cellular pathology of Parkinson's disease: astrocytes, microglia and inflammation. Cell Tissue Res 2004;318:149-61 https://doi.org/10.1007/s00441-004-0944-0
  34. van den Bout I, Divecha N. PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J Cell Sci 2009;122:3837-50 https://doi.org/10.1242/jcs.056127
  35. Yamamoto M, Hilgemann DH, Feng S, Bito H, Ishihara H, Shibasaki Y, Yin HL. Phosphatidylinositol 4,5-bisphosphate induces actin stress-fiber formation and inhibits membrane ruffling in CV1 cells. J Cell Biol 2001;152:867-76 https://doi.org/10.1083/jcb.152.5.867
  36. Yang F, Tang E, Guan K, Wang CY. IKK beta plays an essential role in the phosphorylation of RelA/p65 on serine 536 induced by lipopolysaccharide. J Immunol 2003;170: 5630-5

Cited by

  1. Roles of gangliosides in mouse embryogenesis and embryonic stem cell differentiation vol.43, pp.7, 2011, https://doi.org/10.3858/emm.2011.43.7.048
  2. Phosphatidylinositol 4-phosphate 5-kinase α negatively regulates nerve growth factor-induced neurite outgrowth in PC12 cells vol.45, pp.3, 2010, https://doi.org/10.1038/emm.2013.18
  3. Phosphoinositide turnover in Toll-like receptor signaling and trafficking vol.47, pp.7, 2010, https://doi.org/10.5483/bmbrep.2014.47.7.088
  4. Genetic and Transcriptional Analysis of Human Host Response to Healthy Gut Microbiota vol.1, pp.4, 2016, https://doi.org/10.1128/msystems.00067-16
  5. Perspectives for Ezrin and Radixin in Astrocytes: Kinases, Functions and Pathology vol.20, pp.15, 2019, https://doi.org/10.3390/ijms20153776