DOI QR코드

DOI QR Code

Systemic LPS administration induces brain inflammation but not dopaminergic neuronal death in the substantia nigra

  • Jeong, Hey-Kyeong (Neuroscience Graduate Program Ajou University School of Medicine) ;
  • Jou, Il-O (Neuroscience Graduate Program Ajou University School of Medicine) ;
  • Joe, Eun-Hye (Neuroscience Graduate Program Ajou University School of Medicine)
  • Accepted : 2010.10.18
  • Published : 2010.12.31

Abstract

It has been suggested that brain inflammation is important in aggravation of brain damage and/or that inflammation causes neurodegenerative diseases including Parkinson's disease (PD). Recently, systemic inflammation has also emerged as a risk factor for PD. In the present study, we evaluated how systemic inflammation induced by intravenous (iv) lipopolysaccharides (LPS) injection affected brain inflammation and neuronal damage in the rat. Interestingly, almost all brain inflammatory responses, including morphological activation of microglia, neutrophil infiltration, and mRNA/protein expression of inflammatory mediators, appeared within 4-8 h, and subsided within 1-3 days, in the substantia nigra (SN), where dopaminergic neurons are located. More importantly, however, dopaminergic neuronal loss was not detectable for up to 8 d after iv LPS injection. Together, these results indicate that acute induction of systemic inflammation causes brain inflammation, but this is not sufficiently toxic to induce neuronal injury.

Keywords

Acknowledgement

Supported by : KOSEF, Chronic Inflammatory Disease Research Center (CIDRC) at Ajou University

References

  1. Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci 2004;75:639-53 https://doi.org/10.1016/j.lfs.2003.10.042
  2. Altman R, Motton DD, Kota RS, Rutledge JC. Inhibition of vascular inflammation by dehydroepiandrosterone sulfate in human aortic endothelial cells: roles of PPARalpha and NF-kappaB. Vascul Pharmacol 2008;48:76-84 https://doi.org/10.1016/j.vph.2007.12.002
  3. Batchelor PE, Liberatore GT, Wong JY, Porritt MJ, Frerichs F, Donnan GA, Howells DW. Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 1999;19:1708-16
  4. Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients. Neurosci Lett 1995;202:17-20 https://doi.org/10.1016/0304-3940(95)12192-7
  5. Bogdan C. Nitric oxide and the immune response. Nat Immunol 2001;2:907-16
  6. Bohatschek M, Werner A, Raivich G. Systemic LPS injection leads to granulocyte influx into normal and injured brain: effects of ICAM-1 deficiency. Exp Neurol 2001;172:137-52 https://doi.org/10.1006/exnr.2001.7764
  7. Breitner JC. The role of anti-inflammatory drugs in the prevention and treatment of Alzheimer's disease. Annu Rev Med 1996;47:401-11 https://doi.org/10.1146/annurev.med.47.1.401
  8. Camhi SL, Alam J, Otterbein L, Sylvester SL, Choi AM. Induction of heme oxygenase-1 gene expression by lipopolysaccharide is mediated by AP-1 activation. Am J Respir Cell Mol Biol 1995;13:387-98 https://doi.org/10.1165/ajrcmb.13.4.7546768
  9. Cao C, Matsumura K, Ozaki M, Watanabe Y. Lipopolysaccharide injected into the cerebral ventricle evokes fever through induction of cyclooxygenase-2 in brain endothelial cells. J Neurosci 1999;19:716-25
  10. Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 1992;149:2736-41
  11. Chen H, Zhang SM, Hernan MA, Schwarzschild MA, Willett WC, Colditz GA, Speizer FE, Ascherio A. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 2003;60:1059-64 https://doi.org/10.1001/archneur.60.8.1059
  12. Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, Thun MJ, Ascherio A. Nonsteroidal antiinflammatory drug use and the risk for Parkinson's disease. Ann Neurol 2005a;58:963-7 https://doi.org/10.1002/ana.20682
  13. Chen L, Cagniard B, Mathews T, Jones S, Koh HC, Ding Y, Carvey PM, Ling Z, Kang UJ, Zhuang X. Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J Biol Chem 2005b;280:21418-26 https://doi.org/10.1074/jbc.M413955200
  14. Chow CC, Clermont G, Kumar R, Lagoa C, Tawadrous Z, Gallo D, Betten B, Bartels J, Constantine G, Fink MP, Billiar TR, Vodovotz Y. The acute inflammatory response in diverse shock states. Shock 2005;24:74-84 https://doi.org/10.1097/01.shk.0000168526.97716.f3
  15. Cicchetti F, Brownell AL, Williams K, Chen YI, Livni E, Isacson O. Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 2002;15:991-8 https://doi.org/10.1046/j.1460-9568.2002.01938.x
  16. Croisier E, Moran LB, Dexter DT, Pearce RK, Graeber MB. Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J Neuroinflammation 2005;2:14 https://doi.org/10.1186/1742-2094-2-14
  17. Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 2005;25:9275-84 https://doi.org/10.1523/JNEUROSCI.2614-05.2005
  18. da Silva RP, Gordon S. Phagocytosis stimulates alternative glycosylation of macrosialin (mouse CD68), a macrophagespecific endosomal protein. Biochem J 1999;338:687-94 https://doi.org/10.1042/0264-6021:3380687
  19. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005;8:752-8 https://doi.org/10.1038/nn1472
  20. Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB. Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem 2000;74:2213-6
  21. Elkabes S, DiCicco-Bloom EM, Black IB. Brain microglia/ macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 1996;16:2508-21
  22. Esposito E, Di Matteo V, Benigno A, Pierucci M, Crescimanno G, Di Giovanni G. Non-steroidal anti-inflammatory drugs in Parkinson's disease. Exp Neurol 2007;205: 295-312 https://doi.org/10.1016/j.expneurol.2007.02.008
  23. Etminan M, Carleton BC, Samii A. Non-steroidal antiinflammatory drug use and the risk of Parkinson disease: a retrospective cohort study. J Clin Neurosci 2008;15:576-7 https://doi.org/10.1016/j.jocn.2007.02.095
  24. Frank-Cannon TC, Tran T, Ruhn KA, Martinez TN, Hong J, Marvin M, Hartley M, Trevino I, O'Brien DE, Casey B, Goldberg MS, Tansey MG. Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J Neurosci 2008;28:10825-34 https://doi.org/10.1523/JNEUROSCI.3001-08.2008
  25. Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J Neurochem 2002;81:1285-97 https://doi.org/10.1046/j.1471-4159.2002.00928.x
  26. Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol 1999;56:33-9 https://doi.org/10.1001/archneur.56.1.33
  27. Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ, Gajendiran M, Roth BL, Chesselet MF, Maidment NT, Levine MS, Shen J. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 2003;278:43628-35 https://doi.org/10.1074/jbc.M308947200
  28. Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007;10:1387-94 https://doi.org/10.1038/nn1997
  29. Herrera AJ, Castano A, Venero JL, Cano J, Machado A. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis 2000;7:429-47 https://doi.org/10.1006/nbdi.2000.0289
  30. in 't Veld BA, Launer LJ, Breteler MM, Hofman A, Stricker BH. Pharmacologic agents associated with a preventive effect on Alzheimer's disease: a review of the epidemiologic evidence. Epidemiol Rev 2002;24:248-68 https://doi.org/10.1093/epirev/mxf001
  31. Inoue W, Matsumura K, Yamagata K, Takemiya T, Shiraki T, Kobayashi S. Brain-specific endothelial induction of prostaglandin E(2) synthesis enzymes and its temporal relation to fever. Neurosci Res 2002;44:51-61 https://doi.org/10.1016/S0168-0102(02)00083-4
  32. Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C, Bohme GA, Laville M, Pratt J, Corti O, Pradier L, Ret G, Joubert C, Periquet M, Araujo F, Negroni J, Casarejos MJ, Canals S, Solano R, Serrano A, Gallego E, Sanchez M, Denefle P, Benavides J, Tremp G, Rooney TA, Brice A, Garcia de Yebenes J. Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet 2003;12:2277-91 https://doi.org/10.1093/hmg/ddg239
  33. Ji KA, Yang MS, Jou I, Shong MH, Joe EH. Thrombin induces expression of cytokine-induced SH2 protein (CIS) in rat brain astrocytes: involvement of phospholipase A2, cyclooxygenase, and lipoxygenase. Glia 2004;48:102-11 https://doi.org/10.1002/glia.20059
  34. Ji KA, Yang MS, Jeong HK, Min KJ, Kang SH, Jou I, Joe EH. Resident microglia die and infiltrated neutrophils and monocytes become major inflammatory cells in lipopolysaccharide- injected brain. Glia 2007;55:1577-88 https://doi.org/10.1002/glia.20571
  35. Ji KA, Eu MY, Kang SH, Gwag BJ, Jou I, Joe EH. Differential neutrophil infiltration contributes to regional differences in brain inflammation in the substantia nigra pars compacta and cortex. Glia 2008;56:1039-47 https://doi.org/10.1002/glia.20677
  36. Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res 2008;5:10 https://doi.org/10.1186/1743-8454-5-10
  37. Klegeris A, McGeer PL. Non-steroidal anti-inflammatory drugs (NSAIDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease. Curr Alzheimer Res 2005;2:355-65 https://doi.org/10.2174/1567205054367883
  38. Klein C, Djarmati A, Hedrich K, Schafer N, Scaglione C, Marchese R, Kock N, Schule B, Hiller A, Lohnau T, Winkler S, Wiegers K, Hering R, Bauer P, Riess O, Abbruzzese G, Martinelli P, Pramstaller PP. PINK1, Parkin, and DJ-1 mutations in Italian patients with early-onset parkinsonism. Eur J Hum Genet 2005;13:1086-93 https://doi.org/10.1038/sj.ejhg.5201455
  39. Klein C, Schlossmacher MG. The genetics of Parkinson disease: Implications for neurological care. Nat Clin Pract Neurol 2006;2:136-46
  40. Knott C, Stern G, Wilkin GP. Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyclooxygenases- 1 and -2. Mol Cell Neurosci 2000;16:724-39 https://doi.org/10.1006/mcne.2000.0914
  41. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996;19:312-8 https://doi.org/10.1016/0166-2236(96)10049-7
  42. Lehrmann E, Kiefer R, Christensen T, Toyka KV, Zimmer J, Diemer NH, Hartung HP, Finsen B. Microglia and macrophages are major sources of locally produced transforming growth factor-beta1 after transient middle cerebral artery occlusion in rats. Glia 1998;24:437-48 https://doi.org/10.1002/(SICI)1098-1136(199812)24:4<437::AID-GLIA9>3.0.CO;2-X
  43. Liaudet L, Murthy KG, Mabley JG, Pacher P, Soriano FG, Salzman AL, Szabo C. Comparison of inflammation, organ damage, and oxidant stress induced by Salmonella enterica serovar Muenchen flagellin and serovar Enteritidis lipopolysaccharide. Infect Immun 2002;70:192-8 https://doi.org/10.1128/IAI.70.1.192-198.2002
  44. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 1999;5:1403-9 https://doi.org/10.1038/70978
  45. Liu B, Du L, Hong JS. Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J Pharmacol Exp Ther 2000;293:607-17
  46. Matsumoto H, Kumon Y, Watanabe H, Ohnishi T, Shudou M, Ii C, Takahashi H, Imai Y, Tanaka J. Antibodies to CD11b, CD68, and lectin label neutrophils rather than microglia in traumatic and ischemic brain lesions. J Neurosci Res 2007;85:994-1009 https://doi.org/10.1002/jnr.21198
  47. McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 1988;38:1285-91 https://doi.org/10.1212/WNL.38.8.1285
  48. Meda L, Cassatella MA, Szendrei GI, Otvos L Jr, Baron P, Villalba M, Ferrari D, Rossi F. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 1995; 374:647-50 https://doi.org/10.1038/374647a0
  49. Min KJ, Yang MS, Jou I, Joe EH. Protein kinase A mediates microglial activation induced by plasminogen and gangliosides. Exp Mol Med 2004;36:461-7 https://doi.org/10.1038/emm.2004.58
  50. Min KJ, Yang MS, Kim SU, Jou I, Joe EH. Astrocytes induce hemeoxygenase-1 expression in microglia: a feasible mechanism for preventing excessive brain inflammation. J Neurosci 2006;26:1880-7 https://doi.org/10.1523/JNEUROSCI.3696-05.2006
  51. Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 1994;180:147-50 https://doi.org/10.1016/0304-3940(94)90508-8
  52. Molina-Holgado E, Ortiz S, Molina-Holgado F, Guaza C. Induction of COX-2 and PGE(2) biosynthesis by IL-1beta is mediated by PKC and mitogen-activated protein kinases in murine astrocytes. Br J Pharmacol 2000;131:152-9 https://doi.org/10.1038/sj.bjp.0703557
  53. Muller T, Blum-Degen D, Przuntek H, Kuhn W. Interleukin-6 levels in cerebrospinal fluid inversely correlate to severity of Parkinson's disease. Acta Neurol Scand 1998;98:142-4
  54. Nagatsu T, Sawada M. Inflammatory process in Parkinson's disease: role for cytokines. Curr Pharm Des 2005;11:999- 1016 https://doi.org/10.2174/1381612053381620
  55. Nerlich AG, Weiler C, Zipperer J, Narozny M, Boos N. Immunolocalization of phagocytic cells in normal and degenerated intervertebral discs. Spine (Phila Pa 1976) 2002;27:2484-90 https://doi.org/10.1097/00007632-200211150-00012
  56. Patel HC, Boutin H, Allan SM. Interleukin-1 in the brain: mechanisms of action in acute neurodegeneration. Ann N Y Acad Sci 2003;992:39-47 https://doi.org/10.1111/j.1749-6632.2003.tb03136.x
  57. Perry VH, Cunningham C, Holmes C. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 2007;7:161-7 https://doi.org/10.1038/nri2015
  58. Possel H, Noack H, Putzke J, Wolf G, Sies H. Selective upregulation of inducible nitric oxide synthase (iNOS) by lipopolysaccharide (LPS) and cytokines in microglia: in vitro and in vivo studies. Glia 2000;32:51-9 https://doi.org/10.1002/1098-1136(200010)32:1<51::AID-GLIA50>3.0.CO;2-4
  59. Pyo H, Yang MS, Jou I, Joe EH. Wortmannin enhances lipopolysaccharide-induced inducible nitric oxide synthase expression in microglia in the presence of astrocytes in rats. Neurosci Lett 2003;346:141-4 https://doi.org/10.1016/S0304-3940(03)00505-6
  60. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007;55: 453-62 https://doi.org/10.1002/glia.20467
  61. Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 1999;30:77-105 https://doi.org/10.1016/S0165-0173(99)00007-7
  62. Rezaie P, Corbisiero V, Male D. Transient expression of MIDC-8 in the normal mouse brain. Neurosci Lett 2005;377:189-94 https://doi.org/10.1016/j.neulet.2004.12.002
  63. Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, Masliah E. Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 2002;68:568-78 https://doi.org/10.1002/jnr.10231
  64. Rummel C, Inoue W, Sachot C, Poole S, Hubschle T, Luheshi GN. Selective contribution of interleukin-6 and leptin to brain inflammatory signals induced by systemic LPS injection in mice. J Comp Neurol 2008;511:373-95 https://doi.org/10.1002/cne.21850
  65. Samii A, Etminan M, Wiens MO, Jafari S. NSAID use and the risk of Parkinson's disease: systematic review and metaanalysis of observational studies. Drugs Aging 2009;26:769-79 https://doi.org/10.2165/11316780-000000000-00000
  66. Saper CB. The dance of the perivascular and endothelial cells: mechanisms of brain response to immune signaling. Neuron 2010;65:4-6 https://doi.org/10.1016/j.neuron.2009.12.029
  67. Shi J, Johansson J, Woodling NS, Wang Q, Montine TJ, Andreasson K. The prostaglandin E2 E-prostanoid 4 receptor exerts anti-inflammatory effects in brain innate immunity. J Immunol 2010;184:7207-18 https://doi.org/10.4049/jimmunol.0903487
  68. Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O'Callaghan JP. Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-alpha. FASEB J 2006;20:670-82 https://doi.org/10.1096/fj.05-5106com
  69. Streit WJ. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 2002;40:133-9 https://doi.org/10.1002/glia.10154
  70. Streit WJ. Microglia and neuroprotection: implications for Alzheimer's disease. Brain Res Brain Res Rev 2005;48: 234-9 https://doi.org/10.1016/j.brainresrev.2004.12.013
  71. Strijbos PJ, Rothwell NJ. Interleukin-1 beta attenuates excitatory amino acid-induced neurodegeneration in vitro: involvement of nerve growth factor. J Neurosci 1995;15: 3468-74
  72. Taniura S, Kamitani H, Watanabe T, Eling TE. Transcriptional regulation of cyclooxygenase-1 by histone deacetylase inhibitors in normal human astrocyte cells. J Biol Chem 2002;277:16823-30 https://doi.org/10.1074/jbc.M200527200
  73. Thomas B, Beal MF. Parkinson's disease. Hum Mol Genet 2007;16:R183-94 https://doi.org/10.1093/hmg/ddm159
  74. Thornton P, Pinteaux E, Gibson RM, Allan SM, Rothwell NJ. Interleukin-1-induced neurotoxicity is mediated by glia and requires caspase activation and free radical release. J Neurochem 2006;98:258-66 https://doi.org/10.1111/j.1471-4159.2006.03872.x
  75. Vijitruth R, Liu M, Choi DY, Nguyen XV, Hunter RL, Bing G. Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson's disease. J Neuroinflammation 2006; 3:6 https://doi.org/10.1186/1742-2094-3-6
  76. Vincent VA, Tilders FJ, Van Dam AM. Inhibition of endotoxininduced nitric oxide synthase production in microglial cells by the presence of astroglial cells: a role for transforming growth factor beta. Glia 1997;19:190-8 https://doi.org/10.1002/(SICI)1098-1136(199703)19:3<190::AID-GLIA2>3.0.CO;2-3
  77. Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, Binaglia M, Corsini E, Di Luca M, Galli CL, Marinovich M. Interleukin-1beta enhances NMDA receptormediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 2003;23:8692-700
  78. Von Coelln R, Thomas B, Savitt JM, Lim KL, Sasaki M, Hess EJ, Dawson VL, Dawson TM. Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc Natl Acad Sci USA 2004;101:10744-9 https://doi.org/10.1073/pnas.0401297101
  79. Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson's disease. Br J Pharmacol 2007;150: 963-76
  80. Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 2002;22:1763-71
  81. Zhu XR, Maskri L, Herold C, Bader V, Stichel CC, Gunturkun O, Lubbert H. Non-motor behavioural impairments in parkin-deficient mice. Eur J Neurosci 2007;26:1902-11 https://doi.org/10.1111/j.1460-9568.2007.05812.x
  82. Zwain IH, Yen SS. Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrinology 1999;140:3843-52 https://doi.org/10.1210/en.140.8.3843

Cited by

  1. Effect of Aspartame on Oxidative Stress and Monoamine Neurotransmitter Levels in Lipopolysaccharide-Treated Mice vol.21, pp.3, 2010, https://doi.org/10.1007/s12640-011-9264-9
  2. A new synthetic chalcone derivative, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-κB pathway vol.44, pp.6, 2010, https://doi.org/10.3858/emm.2012.44.6.042
  3. Ginsenoside Rg3이 Lipopolysaccharide에 의한 생쥐 뇌조직의 Cyclooxygenase-2 발현에 미치는 영향 vol.27, pp.6, 2010, https://doi.org/10.6116/kjh.2012.27.6.131
  4. Ethanol Extract of Magnolia officinalis Prevents Lipopolysaccharide‐Induced Memory Deficiency via Its Antineuroinflammatory and Antiamyloidogenic Effects vol.27, pp.3, 2010, https://doi.org/10.1002/ptr.4740
  5. Inhibitory Effects of Ginsenoside Rb1 on Neuroinflammation Following Systemic Lipopolysaccharide Treatment in Mice vol.27, pp.9, 2013, https://doi.org/10.1002/ptr.4852
  6. Retinal cell type‐specific prevention of ischemia‐induced damages by LPS‐TLR4 signaling through microglia vol.126, pp.2, 2010, https://doi.org/10.1111/jnc.12262
  7. Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones vol.10, pp.None, 2010, https://doi.org/10.1186/1742-2094-10-40
  8. Herpes Virus Entry Mediator Signaling in the Brain Is Imperative in Acute Inflammation-Induced Anorexia and Body Weight Loss vol.28, pp.3, 2010, https://doi.org/10.3803/enm.2013.28.3.214
  9. Tetramethylpyrazine이 LPS의 뇌실주입에 따른 생쥐 뇌조직의 Pro-Inflammatory Cytokines 발현에 미치는 영향 vol.28, pp.1, 2010, https://doi.org/10.6116/kjh.2013.28.1.83
  10. Brain Inflammation and Microglia: Facts and Misconceptions vol.22, pp.2, 2013, https://doi.org/10.5607/en.2013.22.2.59
  11. β-Asarone이 Lipopolysaccharide에 의한 생쥐 해마의 염증성 사이토카인 발현과 학습 및 기억 장애에 미치는 영향 vol.28, pp.6, 2010, https://doi.org/10.6116/kjh.2013.28.6.119
  12. Ginsenoside Rg1 Attenuates Neuroinflammation Following Systemic Lipopolysaccharide Treatment in Mice vol.28, pp.6, 2013, https://doi.org/10.6116/kjh.2013.28.6.145
  13. Glycyrrhizin Alleviates Neuroinflammation and Memory Deficit Induced by Systemic Lipopolysaccharide Treatment in Mice vol.18, pp.12, 2010, https://doi.org/10.3390/molecules181215788
  14. Plasminogen in cerebrospinal fluid originates from circulating blood vol.11, pp.None, 2010, https://doi.org/10.1186/s12974-014-0154-y
  15. α-Asarone Ameliorates Memory Deficit in Lipopolysaccharide-Treated Mice via Suppression of Pro-Inflammatory Cytokines and Microglial Activation vol.22, pp.1, 2010, https://doi.org/10.4062/biomolther.2013.102
  16. Misoprostol decreases oxidative stress and liver injury in bacterial lipopolysaccharide-induced endotoxemia in mice vol.23, pp.3, 2010, https://doi.org/10.1007/s00580-012-1656-6
  17. Effect of Cannabis sativa on oxidative stress and organ damage after systemic endotoxin administration in mice vol.23, pp.4, 2010, https://doi.org/10.1007/s00580-013-1745-1
  18. Nigrostriatal damage after systemic rotenone and/or lipopolysaccharide and the effect of cannabis vol.23, pp.5, 2010, https://doi.org/10.1007/s00580-013-1788-3
  19. Matrix Metalloproteinase-8 Plays a Pivotal Role in Neuroinflammation by Modulating TNF-α Activation vol.193, pp.5, 2010, https://doi.org/10.4049/jimmunol.1303240
  20. Effect of adipose tissue-derived mesenchymal stem cell treatment on oxidative stress and inflammatory response following Escherichia coli lipopolysaccharide vol.24, pp.2, 2015, https://doi.org/10.1007/s00580-014-1906-x
  21. Systemic inflammation in early neonatal mice induces transient and lasting neurodegenerative effects vol.12, pp.None, 2010, https://doi.org/10.1186/s12974-015-0299-3
  22. Nutrient and immune sensing are obligate pathways in metabolism, immunity, and disease vol.29, pp.9, 2010, https://doi.org/10.1096/fj.15-271155
  23. Lesion of the locus coeruleus aggravates dopaminergic neuron degeneration by modulating microglial function in mouse models of Parkinson@?s disease vol.1625, pp.None, 2010, https://doi.org/10.1016/j.brainres.2015.08.032
  24. Protection by intraperitoneal administration of bone marrow-derived stem cells of lipopolysaccharide-induced brain and liver damage in mice vol.25, pp.1, 2010, https://doi.org/10.1007/s00580-015-2149-1
  25. Angiotensin Receptor Blockade Modulates NFκB and STAT3 Signaling and Inhibits Glial Activation and Neuroinflammation Better than Angiotensin-Converting Enzyme Inhibition vol.53, pp.10, 2010, https://doi.org/10.1007/s12035-015-9584-5
  26. Neuroinflammation in Synucleinopathies vol.26, pp.3, 2016, https://doi.org/10.1111/bpa.12371
  27. Magnetic Resonance Spectroscopy discriminates the response to microglial stimulation of wild type and Alzheimer’s disease models vol.6, pp.None, 2016, https://doi.org/10.1038/srep19880
  28. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain vol.6, pp.3, 2010, https://doi.org/10.3390/brainsci6030031
  29. Oxidative damage and chemokine production dominate days before immune cell infiltration and EAE disease debut vol.13, pp.None, 2010, https://doi.org/10.1186/s12974-016-0707-3
  30. Anthocyanins control neuroinflammation and consequent memory dysfunction in mice exposed to lipopolysaccharide vol.54, pp.5, 2010, https://doi.org/10.1007/s12035-016-9900-8
  31. A noradrenergic lesion aggravates the effects of systemic inflammation on the hippocampus of aged rats vol.12, pp.12, 2017, https://doi.org/10.1371/journal.pone.0189821
  32. Microglia ablation alleviates myelin-associated catatonic signs in mice vol.128, pp.2, 2010, https://doi.org/10.1172/jci97032
  33. The β2-adrenoceptor agonist clenbuterol reduces the neuroinflammatory response, neutrophil infiltration and apoptosis following intra-striatal IL-1β administration to rats vol.40, pp.2, 2018, https://doi.org/10.1080/08923973.2017.1418882
  34. Smallanthus sonchifolius leaf attenuates neuroinflammation vol.22, pp.2, 2018, https://doi.org/10.20463/jenb.2018.0014
  35. The Healing Effect of Human Milk Fat Globule-EGF Factor 8 Protein (MFG-E8) in A Rat Model of Parkinson’s Disease vol.8, pp.9, 2010, https://doi.org/10.3390/brainsci8090167
  36. The small molecule CA140 inhibits the neuroinflammatory response in wild-type mice and a mouse model of AD vol.15, pp.None, 2010, https://doi.org/10.1186/s12974-018-1321-3
  37. Colony-stimulating factor 1 receptor inhibition prevents disruption of the blood-retina barrier during chronic inflammation vol.15, pp.None, 2010, https://doi.org/10.1186/s12974-018-1373-4
  38. Late Brain Involvement after Neonatal Immune Activation vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/9573248
  39. Towards developing meaningful MRI biomarkers of neuroinflammation vol.97, pp.6, 2010, https://doi.org/10.1002/jnr.24410
  40. Brilliant blue G protects against brain and liver tissue damage during systemic endotoxemia in rats treated with lipopolysaccharide vol.28, pp.5, 2010, https://doi.org/10.1007/s00580-019-02962-7
  41. Correlation between Antibodies to Bacterial Lipopolysaccharides and Barrier Proteins in Sera Positive for ASCA and ANCA vol.21, pp.4, 2010, https://doi.org/10.3390/ijms21041381
  42. Toll-like receptor 4 agonist and antagonist lipopolysaccharides modify innate immune response in rat brain circumventricular organs vol.17, pp.None, 2010, https://doi.org/10.1186/s12974-019-1690-2
  43. Diosgenin Prevents Microglial Activation and Protects Dopaminergic Neurons from Lipopolysaccharide-Induced Neural Damage In Vitro and In Vivo vol.22, pp.19, 2010, https://doi.org/10.3390/ijms221910361
  44. Glial-Neuronal Interactions in Pathogenesis and Treatment of Spinal Cord Injury vol.22, pp.24, 2010, https://doi.org/10.3390/ijms222413577
  45. DA-9805 protects dopaminergic neurons from endoplasmic reticulum stress and inflammation vol.145, pp.None, 2010, https://doi.org/10.1016/j.biopha.2021.112389