DOI QR코드

DOI QR Code

The Review for Various Mold Fabrication toward Economical Imprint Lithography

미세패턴 전사기법을 위한 다양한 몰드 제작법 소개

  • Kim, Joo-Hee (Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Kim, Youn-Sang (Graduate School of Convergence Science and Technology, Seoul National University)
  • 김주희 (서울대학교 융합과학기술대학원 나노융합학과) ;
  • 김연상 (서울대학교 융합과학기술대학원 나노융합학과)
  • Received : 2009.12.07
  • Accepted : 2010.01.20
  • Published : 2010.03.30

Abstract

We suggest here a cost-effective replica fabrication method for transparent and hard molds for imprinting lithography such as NIL and S-FIL. The process starts with the use of a replica hard mold from a master, using a polymer copy as a carrier. The polymer copy as a carrier was treated by soluble process for forming anti-adhesion layer. Duplicated hard molds can eliminate direct contact between a hard master and a patterned polymer on a substrate and the generated contamination of a master during the imprinting process. The replica hard mold exhibits the glass-like properties introduced here, such as transparency and hardness, make it appropriate for nanoimprint lithography and step-and-flash imprint lithography.

NIL, S-FIL과 같은 각인 기술(Imprinting lithography)를 적용하기 위한 투명하고 단단한 복제 틀(replica hard mold)을 제작하여 고가의 원판(master)와 패턴이 형성되는 기판과의 접촉을 근본적으로 방지해 경제적인 공정이 가능함을 제안한다. 실리콘 웨이퍼(Si wafer)와 같은 원판(master)과 패턴 형성 시 사용되는 기판과 직접적인 접촉을 방지하기 위해 우선 액상 공정을 이용하여 비접착성 표면처리된 고분자 복제(polymer copy)를 매개체(carrier)로 단단한 복제 틀을 제작한다. 이렇게 제작된 단단한 복제 틀(replica hard mold)는 유리와 거의 같은 강도와 투명도를 나타내며, 각인 공정(imprinting process)에서 석영 틀, 실리콘 웨이퍼(quartz mold, Si wafer)과 같이 값비싼 원판(master)의 직접 사용을 대체하여 성공적으로 패턴을 구현할 수 있다.

Keywords

References

  1. B. Xu, F. Arias, and G. M. Whitesides, Adv. Mater. 11, 492 (1999). https://doi.org/10.1002/(SICI)1521-4095(199904)11:6<492::AID-ADMA492>3.0.CO;2-I
  2. L. J. Guo, E. Leobandung, and S. Y. Chou, Science 275, 649 (1997). https://doi.org/10.1126/science.275.5300.649
  3. P. M. Mendes, S. Jacke, K. Critchley, J. Plaza, Y. Chen, K. Nikitin, R. E. Palmer, J. A. Preece, S. D. Evans, and D. Fitzmaurice, Langmuir 20, 3766 (2004). https://doi.org/10.1021/la049803g
  4. J. P. Rolland, E. C. Hagberg, G. M. Denison, K. R. Carter, and J. M. De Simone, Angew. Chem. Int. Edit. 43, 5796 (2004). https://doi.org/10.1002/anie.200461122
  5. P. J. Yoo, S.-J. Choi, J. H. Kim, D. Suh, S. J. Baek, T. W. Kim, and H. H. Lee, Chem. Mater. 16, 5000 (2004). https://doi.org/10.1021/cm049068u
  6. S. -J. Choi, P. J. Yoo, S. J. Baek, T. W. Kim, and H. H. Lee, J. Am. Chem. Soc. 126, 7744 (2004). https://doi.org/10.1021/ja048972k
  7. Y. S. Kim, S. J. Baek, and P. T. Hammond, Adv. Mater. 16, 581 (2004). https://doi.org/10.1002/adma.200306231
  8. S. K. Thanawala and M. K. Chaudhury, Langmuir 16, 1256 (2000). https://doi.org/10.1021/la9906626
  9. D. E. Packham, Handbook of Adhesion, 2nd ed. (Wiley, New York, 2005), pp. 400.
  10. N. Y. Lee and Y. S. Kim, Nanotechnology 18, 415303 (2007). https://doi.org/10.1088/0957-4484/18/41/415303
  11. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995). https://doi.org/10.1063/1.114851
  12. T. Bailey, B. Smith, B. J. Choi, M. Colburn, M. Meissl, S. V. Screenivasan, J. G. Ekerdt, and C. G. Willson, J. Vac. Sci. Technol. B. 19, 2806, (2001). https://doi.org/10.1116/1.1420203
  13. K. Guan, B. Lu, and Y. Yin, Suf. Coat. Technol. 173, 219 (2003). https://doi.org/10.1016/S0257-8972(03)00521-8
  14. C. Su, B.-Y. Hong, and C.-M. Tseng, Catal. Today 96, 119, (2004). https://doi.org/10.1016/j.cattod.2004.06.132
  15. M. J. Lee, N.Y. Lee, J. R. Lim, J. B. Kim, H. K. Bail, and Y. S. Kim, Adv. Mater. 18, 3115 (2006). https://doi.org/10.1002/adma.200601268
  16. N. Y. Lee and Y. S. Kim, Macromol. Rapid Commun. 28, 1995 (2007). https://doi.org/10.1002/marc.200700362
  17. K.-H. Haas, Adv. Eng. Mater. 2, 571, (2000). https://doi.org/10.1002/1527-2648(200009)2:9<571::AID-ADEM571>3.0.CO;2-M
  18. C. Sanchez, B. Julian, P. Belleville, and M. Popall, J. Mater. Chem. 15, 3559, (2005). https://doi.org/10.1039/b509097k
  19. J. Kim, M. Kim, M. J. Lee, J. S. Lee, K. Shin, and Y. S. Kim, Adv. Mater. 21, 4050, (2009). https://doi.org/10.1002/adma.200803243

Cited by

  1. Optimization of Ultrasonic Imprinting Using the Response Surface Method vol.22, pp.1, 2013, https://doi.org/10.5228/KSTP.2013.22.1.36
  2. Effect of Material Flow Direction on the Replication Characteristics of the Ultrasonic Patterning Process vol.21, pp.2, 2012, https://doi.org/10.5228/KSTP.2012.21.2.119