DOI QR코드

DOI QR Code

Review and new trends of hydrogen gas sensor technologies

수소센서 기술의 고찰과 최근동향

  • Received : 2010.01.25
  • Accepted : 2010.03.11
  • Published : 2010.03.31

Abstract

Hydrogen is emerging as clean fuel and important industrial raw materials. The hydrogen gas is not sensed by the human olfactory system, But the combustion characteristics of hydrogen is that the ignition is very easy, the propagation speed of the flame is very fast and explosion limits is a wide range of 4 %~75 %. Therefore it is extremely in danger, and the need for its leakage detection technologies is especially important in places such as a production, transportation, storage and usage. The hydrogen sensors are classified with ceramic type, semiconductor type, optical type, electrochemical type and so on. Hydrogen sensors and their technologies are reviewed in detail for materials, fabrication process, sensing characteristics, good point and faults, and production and utilization of sensors be discussed.

Keywords

References

  1. 千原宏, 센서공학, 東逸出版社,1987
  2. 이덕동, 대기환경센서기술, 경북대학교출판부, 2007.
  3. Gerard C. M. Meijer, Smart Sensor Systems, John Wiley & Sons, INC, 2008.
  4. S. M. Sze, Semiconductor Sensors, John Wiley & Sons, INC, 1994.
  5. H. Baltes, W. Gpel and J. Hesse, Sensors Update, WILEY-VCH, 2001.
  6. Ursula E. Spichiger, Chemical Sensors and Biosensors for Medical and Biological Applications, WILEY-VCH, 2004.
  7. 손병기 외, 센서공학, 일진사, 1996.
  8. Craig A. Grimes, Elizabeth C. Dickey and Michael V. Pishko, Encyclopedia of Sensors, American Scientific Publishers, 2006.
  9. 太田時男, 水素エルギ一最先端技術, NTS, 1995.
  10. 심규성 외, 수소의 안전대책 및 물성에 관한연구(I), 과학기술부 보고서, 1991.
  11. 太田時男, 水素에너지, 21세기문화사, 1988.
  12. Cutlerj. Cleceland, Encyclopedia of Energy, Elsevier Inc, vol. 3, 2004.
  13. 한상도 외, "고성능 수소검지 센서개발에 관한 연구", 교육과학기술부 보고서, 2009.
  14. 한상도 외, "고성능 수소검지 센서 기술 개발", 과학기술부 보고서, 2006.
  15. 한상도 외, "수소 시스템의 안전 모니터링용 핵심 소자 개발", 한국에너지기술연구원 보고서, 2007.
  16. 이대식, 이상문, 남기홍, 한상도, 이덕동, "접촉연소식 가스센서의 탄화수소계 가스 감응 특성", 센서학회지, 제8권, 제4호, pp. 327-332, 1999.
  17. 홍대웅, 한치환, 한상도, 곽지혜, 이상렬, "$TiO_2$광촉매와 UV LED를 이용한 접촉연소식 수소센서", 센서학회지, 제16권, 제1호, pp. 7-10, 2007. https://doi.org/10.5369/JSST.2007.16.1.007
  18. 박효덕, 이재석, 김건년, 박종완, 신상모, "탄화수소계 가스 감지용 접촉연소식 가스센서의 제조", 센서학회지, 제3권, 제3호, pp. 9-15, 1994.
  19. 한상도, 홍대웅, 한치환, 전일수, "나노 결정 $SnO_2$와 백금 박막히터를 이용한 접촉연소식 마이크로 가스센서의 감응특성 연구", 센서학회지, 제17권, 제3호, pp. 178-182, 2008. https://doi.org/10.5369/JSST.2008.17.3.178
  20. 김찬우, 곽지혜, 전일수, 한상도, 최시영, "평판형 접촉연소식 마이크로 수소센서의 감지특성 향상", 센서학회지, 제18권, 제3호, pp. 202-206, 2009. https://doi.org/10.5369/JSST.2009.18.3.202
  21. A. Katsuki and K. Fukui, “Hydrogen selective gas sensor based on $SnO_2$”, Sensors Actuators B, vol. 52, pp. 30-37, 1998. https://doi.org/10.1016/S0925-4005(98)00252-4
  22. Zili Zhan, Denggao Jiang, and Jiaqiang Xu. "Investigation of a new In2o3-based selective H2 gas sensor with low power consumtion", Material Chemistry and Physics, vol. 90, pp. 250-254, 2005. https://doi.org/10.1016/j.matchemphys.2004.01.043
  23. W. S. Shin, Masahiko Matsumiya, Noriya Izu and Norimitsu Murayama, "Hydrogen-selective thermoelectric gas sensor", Sensors and Actuators B, vol. 93, pp. 304-308, 2003. https://doi.org/10.1016/S0925-4005(03)00225-9
  24. W. Shin a, M. Matsumiya a,1, F. Qiua,b, N. Izua, and N. Murayamaa, "Thermoelectric gas sensor for detection of high hydrogen concentration", Sensors and Actuators B, vol. 97, pp. 344-347, 2004. https://doi.org/10.1016/j.snb.2003.08.029
  25. N. Sawaguchi, W. S. Shin, N. Izu, I. Matsubara, and N. Murayama, "Effect of humidity on the sensing property of thermoelectric hydrogen sensor", Sensors and Actuators B, vol. 108, pp. 461-466, 2005. https://doi.org/10.1016/j.snb.2004.12.078
  26. J. S. Zhang, W. Luan, H. Huang, Y. Qi, and S.-T. Tu, "Preparation and characteristics of Pt/ACC catalyst for thermoelectric thin film hydrogen sensor", Sensors and Actuators B, vol. 128, pp. 266-272, 2007. https://doi.org/10.1016/j.snb.2007.06.018
  27. H. Huang, W. Luan, J.-S. Zhang, Y.-S. Qi and S.-T. Tu, "Thermoelectric hydrogen sensor working at room temperature prepared by bismuth-telluride Pt/couples and $Pt/{\gamma}-Al_2O_3$", Sensors and Actuators B, vol. 128, pp. 581-585, 2008. https://doi.org/10.1016/j.snb.2007.07.060
  28. Seiyama T. and Kagawa S. "Study on a detector for gaseous components using semiconductive thin films", Anal Chem., vol. 38, no. 73, p. 1069, 1966. https://doi.org/10.1021/ac60240a031
  29. Tianshu Z, Hing P, Li Y and Jiancheng Z. "Selective detection of ethanol vapor, and hydrogen using Cddoped SnO2-based sensors", Sensors Actuators B, vol. 60, no. 15, p. 208, 1999. https://doi.org/10.1016/S0925-4005(99)00272-5
  30. Shimizu Y, Kanazawa E, Takao Y, and Egashira M. "Modification of $H_2$ sensitive breakdown voltages of $SnO_2$ varistors with noble metals", Sensors Actuators B, vol. 52, no. 4, p. 38, 1998. https://doi.org/10.1016/S0925-4005(98)00253-6
  31. Shimizu Y, Kuwano N, Hyodo T, and Egashira M. "High $H_2$ sensing performance of anodically oxidized $TiO_2$ film contacted with Pd”, Sensors Actuators B, vol. 83, no. 1, p. 195, 2002. https://doi.org/10.1016/S0925-4005(01)01040-1
  32. Moon WJ, Yu JH, and Choi GM. "The CO and H2 gas selectivity of CuO-doped $SnO_2-nO4 composite gas sensor", Sensors Actuators B, vol. 87, p. 464, 2002. https://doi.org/10.1016/S0925-4005(02)00299-X
  33. Wang J, Tang M, Wang X, Ma Y, Liu D, Wu J., "Preparation of $H_2$ and LPG gas sensor", Sensors Actuators B, vol. 84, p. 95, 2002. https://doi.org/10.1016/S0925-4005(01)01065-6
  34. 백태성, 이재곤, 최시영, "유중 용존수소 감지를 위한 Pd/Pt Gate MISFET 센서의 제조와 그 특징", 센서학회지, 제5권, 제4호, pp. 41-46, 1996.
  35. 조용수, 손승현, 최시영, "수중 수소 감지를 위한 MISFET형 센서제작과 그 특성", 센서학회지, 제9권, 제2호, pp. 113-118, 2000.
  36. 김갑식, 이재곤, 함성호, 최시영, "유중 용존수소 감지를 위한 Pd/NiCr 게이트 MISFET 센서의 제작", 센서학회지, 제6권, 제3호, pp. 221-226, 1997.
  37. 강기호, 조용수, 한상도, 최시영, "Pd-balck촉매금속 이용한 고성능 MISFET형 수소센서", 센서학회지, 제15권, 제2호, pp. 90-96, 2006.
  38. S.-Y. Choi, K. Takahashi, and T. Matsuo, "No blister formation Pd/Pt double metal gate MISFET hydrogen sensors", IEEE Electron Device Lett, vol. EDL-5, no. 1, pp. 14-15, 1984.
  39. I. Lundstrom, S. Shivaraman, C. Svensson, and L. Lundqvist, "A hydrogen-sensitive MOS field-effect transistor", Appl. Phys. Lett., vol. 26, pp. 55-56, 1975. https://doi.org/10.1063/1.88053
  40. J. C. Barton, F. A. Lewis, and I. Woodward, "Hysteresis of the relationships between electrical resistance and the hydrogen content of palladium", Trans. Faraday Soc., vol. 58, pp. 1201-1207, 1962.
  41. P. Frjes, Cs. Dcs, M. dm, J. Zettnerb, and I. Brsony, "Thermal characterisation of micro-hotplates used in sensor structures", Superlattices and Microstructures, vol. 35, no. 64, p. 455, 2004. https://doi.org/10.1016/j.spmi.2003.09.007
  42. S.M. Lee, D.C. Dyer, and J.W. Gardner, "Design and optimisation of a high-temperature silicon micro-hotplate for nanoporous palladium pellistors", Microelectronics Journal, vol. 34, 2003. https://doi.org/10.1016/S0026-2692(02)00153-2
  43. Ingemar Lundstrm, Hans Sundgren, Fredrik Winquist, Mats Eriksson, Christina Krantz-Rlcker, and Anita Lloyd-Spetz, "Twenty-five years of field effect gas sensor research in Linkping", Sensors Actuators B, vol. 121, pp. 247-262, 2007. https://doi.org/10.1016/j.snb.2006.09.046
  44. 정귀상, 안정학, "Pd/다결정 3C-SiC쇼트키 다이오드형 수소센서의 제작과 그 특성", 센서학회지, 제18권, 제3호, pp. 222-225, 2009. https://doi.org/10.5369/JSST.2009.18.3.222
  45. 김창교, 이주헌, 이영환, 최석면, 조남인 "Pd-SiC 쇼트키 다이오드의 수소 가스 감응 특성", 센서학회지, 제8권, 제6호, pp. 448-453, 1999.
  46. Philippe Colomban, Proton conductors Solids, membranes and gels-materials and devices, CAMBRIDGE UNIVERSITY PRESS, 1992.
  47. G. Korotcenkov, S.-D. Han, and J. R. Stetter, Review of electrochemical hydrogen sensor, CHEMICAL REVIEWS, vol. 109, no. 3, 2009.
  48. I. Treglazov, L. Leonova, Y. Dobrovolsky, A. Ryabov, A. Vakulenko, and S. Vassiliev, "Electrocatalytic effects in gas sensors based on low-temperature superprotonics", Sens. Actuators B, vol. 106, pp. 164-169, 2005. https://doi.org/10.1016/j.snb.2004.05.053
  49. J. Ravi Prakash, A.H. McDaniel, M. Horna, L. Pilione, P. Sunal, R. Messier, R.T. McGrath, and F.K. Schweighardt, "Hydrogen sensors: Role of palladium thin film morphology", Sensors and Actuators B, vol. 120, no. 46, pp. 439, 2007. https://doi.org/10.1016/j.snb.2006.02.050
  50. Min Wang and Ying Feng, "Palladium-silver thin film for hydrogen sensing", Sensors and Actuators B, vol. 123, no. 6, pp. 101, 2007. https://doi.org/10.1016/j.snb.2006.07.030
  51. K.J. Stevens, B. Ingham, M.F. Toney, S.A. Brown, and A. Lassesson, "Structure of palladium nanoclusters for hydrogen gas sensors", Current Applied Physics, vol. 8, no. 46, p. 443, 2008. https://doi.org/10.1016/j.cap.2007.10.032
  52. Shufang Yu, Ulrich Welp, Leonard Z. Hua, Andreas Rydh, Wai K. Kwok, and H. Hau Wang, "Fabrication of palladium nanotubes and their application in hydrogen sensing", Chem. Mate, vol. 17, pp. 3445-3450, 2005. https://doi.org/10.1021/cm048191i
  53. E. C. Walter, F. Favier, and R. M. Penner, "Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches", Anal. Chem, vol. 74, pp. 1546-1553, 2002. https://doi.org/10.1021/ac0110449
  54. Pushpendra Kumar and L.K. Malhotra, "Palladium capped samarium thin films as potential hydrogen sensors", Materials Chemistry and Physics, vol. 88, no. 9, p. 106, 2004. https://doi.org/10.1016/j.matchemphys.2004.06.038
  55. K. Yoshimura, K. Nomura, T. Kanai, S. Nakabayashi, K. Harada, and N. Uchiyama, "Hydrogen sensor using reflectance change of switchable mirror thin film", The Electrochemical Society, 2009.
  56. Zhouying Zhao, Mark Knight, Sumit Kumar, Eric T. Eisenbraum, and Michael A. Carpenter, "Humidity effects on Pd/Au-based all-optical hydrogen sensors", Sensors and Actuators B, 2007.
  57. Donato Luna-Moreno and David Monzn-Hernndez, "Effect of the Pd-Au thin film thickness uniformity on the performance of an optical fiber hydrogen sensor", Sensors and Actuators B, vol. 253, pp. 8615-8619, 2007.
  58. Hamagami. Jun-ichi, Oh. Yong-Su, Watanabe. Yuichi, and Takata. Masasuke, "Preparation and characterization of an optically detectable H2 gas sensor consisting of $Pd/MoO_3$ thin film", Sensors and Actuators B, vol. B13, pp. 281-283, 1993.
  59. A. D'Amico, A. Palma, and E. Verona, "Palladiumsurface acoustic wave interaction for hydrogen detection", Appl. Phys. Lett. vol. 41, p. 300, 1982. https://doi.org/10.1063/1.93471
  60. A. D'Amico, A. Palma, and E. Verona, "Surface acoustic wave hydrogen sensor", Sensors and Actuators, vol. 3, p. 31, 1982. https://doi.org/10.1016/0250-6874(82)80004-8
  61. V. I. Anisimkina, I. M. Kotelyanskiia, P. Verardib, and E. Veronab, "Elastic properties of thin-film palladium for surface acoustic wave(SAW) sensors", Sensors and Actuators B, vol. 23, Issues 2-3, 1995.
  62. Frank DiMeo Jr. and Barry Chen, "Micro-hotplate based $H_2$ gas sensors", Proceedings of the 2000 Hydrogen Program Review, NREL / CP - 570 - 28890.
  63. Frank DiMeo Jr, I.-S. Chena, Philip Chen, Jeffrey Neuner, Andreas Roerhl, and James Welch, "MEMSbased hydrogen gas sensors", Sensors and Actuators B, vol. 117 no. 6, p. 10, 2006. https://doi.org/10.1016/j.snb.2005.05.007
  64. P. Frjes, Cs. Dcs, M. dm, J. Zettnerb, and I. Brsony, "Thermal characterisation of micro-hotplates used in sensor structures", Superlattices and Microstructures, vol. 35, no. 64, p. 455, 2004. https://doi.org/10.1016/j.spmi.2003.09.007
  65. Isolde Simon, Nicolae Brsan, Michael Bauer, and Udo Weimar, "Micromachined metal oxide gas sensors: opportunities to improve sensor performance", Sensors and Actuators B, vol. 73, pp. 1-26, 2001. https://doi.org/10.1016/S0925-4005(00)00639-0
  66. Chaudhari GN, Bende AM, Bodade AB, Patil SS, and Sapkal VS., "Structural and gas sensing properties of nanocrystalline $TiO_2$: $WO_3$ -based hydrogen sensors", Sensors Actuators B, vol. 115, p. 297, 2006. https://doi.org/10.1016/j.snb.2005.09.014
  67. Shukla S, Seal S, Ludwig L, and Parish C. "Nanocrystalline indium oxidedoped tin oxide thin film as low temperature hydrogen sensor", Sensors and Actuators B, vol. 97, no. 5, p. 256, 2002.
  68. Shukla S., Agrawal R., Cho H.J., and Seal S., "Effect of ultraviolet radiation exposure on room-temperature hydrogen sensitivity of nanocrystalline doped tin oxide sensor incorporated into microelectromechanical systems device", J Appl Phys, vol. 97, p. 054307, 2005. https://doi.org/10.1063/1.1851597
  69. Zhang S.P., Cho H.J., Rahman Z., Drake C., and Seal S., "Hydrogen discriminating nano-crystalline doped tin oxide room-temperature microsensor", J Appl Phys vol. 98, p. 104306, 2005. https://doi.org/10.1063/1.2132095
  70. Han C.-H., Han S.-D., Singh I., and Toupance T., "Micro-bead of nanocrystalline F-doped $SnO_2$ as a sensitive hydrogen gas sensor", Sensors and Actuators B, vol. 109, p. 264, 2005. https://doi.org/10.1016/j.snb.2004.12.115
  71. Shufang Yu, Ulrich Welp, Leonard Z. Hua, Andreas Rhdh, Wai K. Kwok, and H. Hau Wang, "Fabrication of palladium nanotubes and their application in hydrogen sensing", Chem. Mater, vol. 17, pp. 3445-3450, 2005. https://doi.org/10.1021/cm048191i
  72. K. J. Stevens, B. Ingham, M. F. Toney, S. A. Brown, and A. Lassesson, "Structure of palladium nanoclusters for hydrogen gas sensors", Current Applied Physics, vol. 8, pp. 443-446, 2008. https://doi.org/10.1016/j.cap.2007.10.032
  73. Shufang Yu, Ulrich Welp, Leonard Z. Hua, Andreas Rhdh, Wai K. Kwok, and H. Hau Wang, "Fabrication of palladium nanotubes and their application in hydrogen sensing", Chem. Mater, vol. 17, pp. 3445-3450, 2005. https://doi.org/10.1021/cm048191i
  74. P. Castello, "Hydrogen sensors for on board diagnostics", European Joint Research Centre Report, 2006.

Cited by

  1. Fabrication of a Porous 3C-SiC Based Resistivity Hydrogen Sensor and Its Characteristics vol.20, pp.3, 2011, https://doi.org/10.5369/JSST.2011.20.3.168