DOI QR코드

DOI QR Code

PCL Infiltration into a BCP Scaffold Strut to Improve the Mechanical Strength while Retaining Other Properties

  • Kim, Min-Sung (Department of Biomedical Engineering and Materials, College of Medicine, Soonchunhyang Univ.) ;
  • Kim, Yang-Hee (Department of Biomedical Engineering and Materials, College of Medicine, Soonchunhyang Univ.) ;
  • Park, Ih-Ho (Department of Biomedical Engineering and Materials, College of Medicine, Soonchunhyang Univ.) ;
  • Min, Young-Ki (Department of Biomedical Engineering and Materials, College of Medicine, Soonchunhyang Univ.) ;
  • Seo, Hyung-Seok (Department of Occupational Therapy, College of Health Sciences, Konyang Univ.) ;
  • Lee, Byong-Taek (Department of Biomedical Engineering and Materials, College of Medicine, Soonchunhyang Univ.)
  • Received : 2010.05.27
  • Accepted : 2010.06.16
  • Published : 2010.06.27

Abstract

A highly porous Biphasic Calcium Phosphate (BCP) scaffold was fabricated by the sponge replica method with a microwave sintering technique. The BCP scaffold had interconnected pores ranging from $80\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To enhance the mechanical properties of the porous scaffold, infiltration of polycaprolactone (PCL) was employed. The microstructure of the BCP scaffold was optimized using various volume percentages of polymethylmethacrylate (PMMA) for the infiltration process. PCL successfully infiltrated into the hollow space of the strut formed after the removal of the polymer sponge throughout the degassing and high pressure steps. The microstructure and material properties of the BCP scaffold (i.e., pore size, morphology of infiltrated and coated PCL, compressive strength, and porosity) were evaluated. When a 30 vol% of PMMA was used, the PCL-BCP scaffold showed the highest compressive strength. The compressive strength values of the BCP and PCL-BCP scaffolds were approximately 1.3 and 2MPa, respectively. After the PCL infiltration process, the porosity of the PCL-BCP scaffold decreased slightly to 86%, whereas that of the BCP scaffold was 86%. The number of pores in the $10\;{\mu}m$ to $20\;{\mu}m$ rage, which represent the pore channel inside of the strut, significantly decreased. The in-vitro study confirmed that the PCL-infiltrated BCP scaffold showed comparable cell viability without any cytotoxic behavior.

Keywords

References

  1. V. Karageorgiou and D. Kaplan, Biomaterials, 26, 5474(2005). https://doi.org/10.1016/j.biomaterials.2005.02.002
  2. O. Gauthier, J. M. Bouler, E. Aguado, P. Pilet and G.Daculsi, Biomaterials, 19, 133 (1998). https://doi.org/10.1016/S0142-9612(97)00180-4
  3. M. Kim, I. H. Park and B. T. Lee, Kor. J. Mater. Res.,19(12), 680 (2009). https://doi.org/10.3740/MRSK.2009.19.12.680
  4. K. Araki and J. W. Halloran, J. Am. Ceram. Soc., 88(5),1108 (2005). https://doi.org/10.1111/j.1551-2916.2005.00176.x
  5. A. K. Gain, H. Y. Song and B. T. Lee, Script. Mater., 54,2081 (2006). https://doi.org/10.1016/j.scriptamat.2006.03.009
  6. B. T. Lee, K. H. Kim, H. C. Youn and H. Y. Song, J. Amer. Ceram. Soc., 90, 629 (2007). https://doi.org/10.1111/j.1551-2916.2006.01394.x
  7. J. M. Bouler, M. Trecant, J. Delecrin, J. Royer, N. Passutiand G. J. Daculsi, Biomed. Mater. Res., 32, 603 (1996). https://doi.org/10.1002/(SICI)1097-4636(199612)32:4<603::AID-JBM13>3.0.CO;2-E
  8. L. Huang, K. Nagapaudi, R. P. Apkarian and E. L.Chaikof, J. Biomater. Sci. Polym. Ed., 12, 979 (2001). https://doi.org/10.1163/156856201753252516
  9. A. S. Goldstein, G. Zhu, G. E. Morris, R. K. Meslenyi andA. G. Mikos, Tissue Eng., 5, 421 (1999). https://doi.org/10.1089/ten.1999.5.421
  10. L. L. Hench, ‘Bioceramics’ J. Am. Ceram. Soc., 81(7),1705 (1998).
  11. H. R. R. Ramay and M. Zhang, Biomaterials, 25, 5171 (2004). https://doi.org/10.1016/j.biomaterials.2003.12.023
  12. J. Zhao, L.Y. Guo, X. B. Yang and J. Weng, Appl. Surf. Sci., 255, 2942 (2008). https://doi.org/10.1016/j.apsusc.2008.08.056
  13. B. Liu, P. Lin, Y. Shen and Y. Dong, J. Mater Sci. Mater. Med., 19, 1203 (2008). https://doi.org/10.1007/s10856-007-3216-1
  14. M. Peroglio, L. Gremillard, J. Chevalier, L. Chazeau, C.Gauthier and T. Hamaide, J Europ. Ceram. Soc., 27,2679 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.10.016
  15. X. Miao, D. M. Tan, J. Li, Y. Xiao and R. Crawford,Acta Biomater., 4, 638 (2008). https://doi.org/10.1016/j.actbio.2007.10.006
  16. H. L. Khor, K. W. Ng, J. T. Schantz, T. -T. Phan, T. C.Lim, S. H. Teoh and D.W. Hutmacher, Mater. Sci. Eng. C, 20, 71 (2002). https://doi.org/10.1016/S0928-4931(02)00015-2
  17. C. S. Ng, S. H. Teoh, T. S. Chung and D. W. Hutmacher,Polymer, 41, 5855 (2000). https://doi.org/10.1016/S0032-3861(99)00760-0
  18. R. S. Bezwada, D. D. Jamiolkowski, I. Y. Lee, V. Agarwal,J. Persivale, S. Trenka-Benthin, M. Erneta, J. Suryadevara, A. Yang and S. Liu, Biomaterials, 16, 1141 (1995). https://doi.org/10.1016/0142-9612(95)93577-Z
  19. P. D. Darney, S. E. Monroe, C. M. Klaisle and A. Alvarado,J. Obstet. Gynecol., 160, 1292 (1989).
  20. W. Suchanek and M. Yoshimura, J. Mater. Res., 13(1),94 (1998). https://doi.org/10.1557/JMR.1998.0015
  21. B. T. Lee, M. H. Youn, R. K. Paul, K. H. Lee and H. Y.Song, Mater. Chem. Phys., 104, 249 (2007). https://doi.org/10.1016/j.matchemphys.2007.02.009
  22. B. D. Hahn, D. S. Park, J. J. Choi, J. Ryu, W. H. Yoon,B. K. Lee and H. E. Kim, J. Am. Ceram. Soc., 92(4),793 (2009). https://doi.org/10.1111/j.1551-2916.2009.02949.x
  23. C. Rey, Biomaterials, 11, 13 (1990). https://doi.org/10.1016/0142-9612(90)90045-R
  24. G. B. Valery, B. Francis, B. Omar, B. Frank, F. Michel,R. K. Nathali, U. Nathalie and M. Philippe, Colloid. Surface B.; 59, 194 (2007). https://doi.org/10.1016/j.colsurfb.2007.05.010
  25. W. C Tze, Z. L. Der, Y. W. Sin and S. W. Shoei,Biomaterials, 24, 4655 (2003). https://doi.org/10.1016/S0142-9612(03)00361-2

Cited by

  1. A Novel Photoactive Nano-Filtration Module Composed of a TiO2 Loaded PVA Nano-Fibrous Membrane on Sponge Al2O3 Scaffolds and Al2O3-(m-ZrO2)/t-ZrO2 Composites vol.52, pp.7, 2011, https://doi.org/10.2320/matertrans.M2011039
  2. Enhancement of mechanical properties of 3D printed hydroxyapatite by combined low and high molecular weight polycaprolactone sequential infiltration. vol.27, pp.11, 2016, https://doi.org/10.1007/s10856-016-5784-4
  3. for bone tissue applications vol.115, pp.4, 2018, https://doi.org/10.1002/bit.26514