Application of Analysis Models on Soil Water Retention Characteristics in Anthropogenic Soil

인위적으로 변경된 토양에서의 수분보유특성 해석 모형의 적용

  • Hur, Seung-Oh (Research Policy Bureau, RDA) ;
  • Jeon, Sang-Ho (National Academy of Agricultural Science, RDA) ;
  • Han, Kyung-Hwa (National Academy of Agricultural Science, RDA) ;
  • Jo, Hee-Rae (National Academy of Agricultural Science, RDA) ;
  • Sonn, Yeon-Kyu (National Academy of Agricultural Science, RDA) ;
  • Ha, Sang-Keun (National Academy of Agricultural Science, RDA) ;
  • Kim, Jeong-Gyu (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Nam-Won (Division of Wader Resources Research, Korea Institute of Construction Technology)
  • Received : 2010.11.17
  • Accepted : 2010.12.20
  • Published : 2010.12.31

Abstract

This study was conducted to assess the propriety of models for soil water characteristics estimation in anthropogenic soil through the measurement of soil water content and soil water matric potential. Soil profile was characterized with four different soil layers. Soil texture was loamy sand for the first soil layer (from soil surface to 30 cm soil depth), sand for the second (30~70 cm soil depth) and the third soil layers (70~120 cm soil depth), and sandy loam for the fourth soil layer (120 cm < soil depth). Soil water retention curve (SWRC), the relation between soil water content and soil water matric potential, took a similar trend between different layers except the layer of below 120 cm soil depth. The estimation of SWRC and air entry value was better in van Genuchten model by analytical method than in Brooks-Corey model with power function. Therefore, it could be concluded that van Genuchten model is more desirable than Brook-Corey model for estimating soil water characteristics of anthropogenic soil accumulated with saprolite.

원토양인 논토양 위에 마사토를 적토(積土)한 토양에 대한 토양수분 특성곡선을 작성해 보고, 이를 추정하는데 가장 널리 활용되고 있는 van Genuchten (VG) 모형과 Brooks-Corey (BC) 모형을 비교평가 해 그 효용성을 판단하기 위해 수행했다. 4개의 층위로 구분되는 측정 대상토양은 표토부터 30 cm 까지는 양질사토, 30~70, 70~120 cm는 사토, 120 cm 이상에서는 사양토로 분석된 토양이다. 토양수분 함량과 토양수분 메트릭 퍼텐셜과의 관계를 나타내는 토양수분 특성곡선 분석에 따르면, 원토양인 120 cm 이상 깊이 토양에서의 수분보유 특성을 제외하고 나머지 세 개 층위 토양에서의 수분 보유 특성은 0~30 cm, 30~70 cm 층위는 비슷하고 70~120 cm 층위는 약간 높은 경향이었다. 상대수분 포화도와 토양수분 메트릭 퍼텐셜의 관계를 표현함에 있어 멱함수 형태인 BC 모형보다는 해석학적 분석방법을 활용한 VG모형이 실측값에 근사한 추정결과를 제공했다. 포화상태의 종점이자 불포화상태의 시발점인 공기유입가 (AEV) 추정에도 측정 한계치 부근의 메트릭 퍼텐셜 값을 나타내는 BC모형보다는 9.5~40 cm (4 kPa)을 보였던 VG모형이 적합했다. 따라서, 인위적으로 원토양 위에 석비레 (마사토)로 적토된 토양에서의 토양수분 특성곡선 작성을 위한 추정모형에 VG모형을 활용하는 것이 바람직할 것이다. 이러한 결과로부터 VG 모형을 수자원량 산정을 위한 SCS (Soil Conservation Service, USDA) CN (Curve Number) 계산 과정에서 토양단면 내의 수분 보유 인자 (retention parameter) 산출을 위한 토양수분함량을 추정하는데 활용하거나 침투모형 (Green-Ampt Mein-Larson)을 설명하기 위한 습윤전선 매트릭 퍼텐셜을 추정하는데 사용할 수 있을 것이다.

Keywords

References

  1. Brooks, R.H. and A.T. Corey. 1964. Hydraulic properties of porous media, Hydrol. Pap. 3. Colorado State University, Fort Collins.
  2. Eom K.C., G.C. Song, G.S. Ryu, Y.K. Sonn, and S.E. Lee. 1995. Model equations to estimate the soil water characteristics curve using scaling factor. J. Korean Soc. Soil Sci. Fert. 28:227-232.
  3. Hur, S.O., K.H. Moon, K.H. Jung, S.G. Ha, K.C. Song, H.C. Lim, and J.G. Kim. 2006. Estimation model for simplification and validation of soil water characteristics curve on volcanic ash soil in subtropical area in Korea. J. Korean Soc. Soil Sci. Fert. 39:329-333.
  4. McCuen, R.H., W.J. Rawls, and D.L. Brakensiek. 1981. Statistical analysis of the Brook- Corey and Green-Ampt parameters across soil texture. Water Resource Research. 17:1005-1013. https://doi.org/10.1029/WR017i004p01005
  5. Mein, M.A. and C.C. Larson. 1973. Modeling infiltration during a steady rain. Water Resource Research. 9:384-394. https://doi.org/10.1029/WR009i002p00384
  6. Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res. 12:593-622.
  7. Rawls, W.J. and D.L. Brakensiek. 1985. Prediction of soil water properties for hydrologic modeling, In E.B. Jones and T.J. Ward (ed.), Watershed Management in the 80's, ASCE, Newyork, p. 293-299.
  8. Rawls, W.J. and D.L. Brakensiek. 1989. Estimation of soil water retention and hydraulic properties, HJ Morel-Seytoux (ed.), Unsaturated Flow in Hydraulic Modeling Theory and Practice, NATO ASI Series c: Mathematical and Physical Science, 275:275-300.
  9. van Genuchten, M. Th. 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  10. Wraith, J.M. and D. Or. 1998. Nonlinear parameter estimation using spreadsheet software J. Nat. Resour. Life Sci. Educ. 27:13-19.