Clay Activity and Physico-chemical Properties of Korean Soils with Different Clay Minerals

점토광물 조성이 상이한 토양의 점토활성도와 이화학적 특성

  • 장용선 (농촌진흥청 국립농업과학원) ;
  • 손연규 (농촌진흥청 국립농업과학원) ;
  • 박찬원 (농촌진흥청 국립농업과학원) ;
  • 현병근 (농촌진흥청 국립농업과학원) ;
  • 문용희 (농촌진흥청 국립농업과학원) ;
  • 송관철 (농촌진흥청 국립농업과학원)
  • Received : 2010.11.29
  • Accepted : 2010.12.20
  • Published : 2010.12.31

Abstract

This research investigated classification of clay activity degree by different clay mineral components. Based on compositions of different clay and oxide minerals within 390 soil series in Korea, 7 soils were selected to analyze for CEC and specific surface area of clay minerals. As a result, soils were mainly composed with Chlorite originated from sandstone, Smectite originated from Andesite porphyry and combination of Allophane and Ferrihydrite originated from volcanic ash, if the ratio of CEC value to clay content (degree of clay activity) was greater than 0.7. If the degree of clay activity was ranged between 0.3 and 0.7, soils were composed mainly with Kaolin originated from anorthite. Soils with this ratio also was composted with combinations of Kaolin, Illite and Vermiculite originated with river deposits. When the degree of the activity was less than 0.3, soils were commonly red-yellowish color and composed with two different minerals. One type of composition was Kaolin originated from granite and granite gneiss and the soils contained Geothite and Hematite. The other type was composited mainly with Illite and Vermiculite minerals originated from granite. These soils contained Gibbsite, Geothite and Hematite. The degree of clay activity was highly related with CEC and specific surface area. The greater degree of the activity displayed greater values of clay CEC and specific surface area. It is not easy to measure actual quantity and compositions of clay minerals, while the degree of clay activity can be measured from routine soil analyses. As a conclusion, the degree of clay activity may be not just a simple but also powerful tool to estimate physical-chemical properties of soils and to evaluate the soil classification in Korean soils.

토양광물 종류별 토양의 점토활성도를 구분하기 위하여 우리나라 390개 토양통을 점토광물과 함수산화광물을 기준으로 점토광물 조성이 다른 7개의 토양을 선정하여 토양광물 종류에 따른 점토의 CEC와 비표면적을 비교하였다. 토양 CEC에 대한 점토의 비가 0.7 이상인 토양은 사암을 모재로 Chlorite를 주광물로 하는 토양, 안산암질반암을 모재로 Smectite를 함유한 토양, 화산재를 모재로 Allophane과 Ferrihydrite가 주광물로 이루어진 토양이었으며, 점토활성도 0.3-0.7인 토양은 회장석을 모재로 Kaolin이 주광물 토양, 하성퇴적토를 모재로 Kaolin, Illite, Vermiculite가 혼합된 토양이었다. 또한 점토활성도 0.3이하인 토양은 화강암 및 화강편마암 모재의 Kaolin을 주광물로 Geothite와 Hematite가 함유된 적황색계 토양, 석회암 모재의 Illite와 Vermiculite를 주광물로 Gibbsite, Geothite, Hematite가 함유된 적황색계 토양이었다. 토양의 점토활성도는 점토의 CEC, 점토의 비표면적과 상관이 있어서 점토활성도가 높은 토양에서는 점토의 CEC가 높고 점토의 비표면적이 넓었다. 따라서 토양의 점토활성도는 기존의 점토광물의 정성과 정량분석을 실시하지 않고도 토양의 일반적인 분석을 통하여 토양 중 점토광물의 조성을 추정하고 토양의 물리-화학적 특성을 예측하는데 유용한 기준이 될 것으로 생각된다.

Keywords

References

  1. Bigham, J.M., D.C. Golden, S.W. Boul, S.B. Weed, and L.H. Bowen. 1978. Iron oxide mineralogy of well-drained Ultisols and Oxisols. II. Influence on color, surface area and phosphate retention. Soil Sci. Soc. Am. J. 42:825-830. https://doi.org/10.2136/sssaj1978.03615995004200050034x
  2. Birrell, K.S. and M. Fieldes, M. 1952. Allophane in volcanic ash soils. J. Soil Sci. 3:156-166. https://doi.org/10.1111/j.1365-2389.1952.tb00639.x
  3. Biscaye, P.E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Am. Bull. 76:803-831. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  4. Brady, N.C. 1974. The nature and properities of soils : 8th edition. Macmillan Publishing., INC., New York.
  5. Burt, R. 1995. Soil survey laboratory information Manual.Soil survey investigations rept. N. 45, Version 1.0, USDA, US government printing office, Washington, DC.
  6. Carter, D.L., M.D. Heilman, and C.L. Gonzalez. 1965. Ethylene glycol monoethyl ether for determining surface area of silicate minerals. Soil Sci. 100:356-360. https://doi.org/10.1097/00010694-196511000-00011
  7. Childs, C.W. 1985. Towards understanding soil mineralogy. II. Note on feffihydrate. Laboratorg Report CM7. Soil Bureau, Lower Hutt, New Zealand.
  8. Chung, F.H. 1974. Quantitative interpretation of x-ray diffraction patterns of mixtures. I. Matrix flushing method for quantitative multi-component analysis. J. Appl. Crystallog. 7:519-525. https://doi.org/10.1107/S0021889874010375
  9. De Oliveira, J.B. and M. van den Berg. 1996. Relation between the soil units of the FAO-Unesco soil map of the world legend and the soil classes used in the Brazilian surveys, Technical Paper 29, ISRIC, Wageningen, 45 pp.
  10. Fontes, M.P.F. 1992. Iron oxide clay-mineral association in Brazilian Oxisols : A magnetic separation study. Clays & Clay Miner. 40:175-179. https://doi.org/10.1346/CCMN.1992.0400206
  11. Heath, G.R. and N.G. Pisias. 1979. A method for the quantitative estimation of clay minerals in North Pacific deep sea sediments. Clays Clay Miner. 27:175-184. https://doi.org/10.1346/CCMN.1979.0270302
  12. Hyeon G.S. C.S. Park, K.Y. Jung, S.K. Rim, and K.T. Um. 1991. Soil CEC for textural classes in Korea. J. Korean Soc. Soil Sci. Fert. 24:10-16.
  13. Low, P.F. 1992. lnterparticle forces in clay suspensions: flocculation, viscous flow. and swelling. in: Clay-Water lnterface and its Rheological lmplications, Guven, N. and Pollastro, R.M. (eds.), cms workshop lectures, 4, The Clay Minerals Society, 157-190.
  14. Ottner, F., S. Gier., M. Kuderna, and B. Schwaighofer. 2000. Results of an inter-laboratory comparison of methods for quantitative clay analysis. Applied Clay Science 17: 223-243. https://doi.org/10.1016/S0169-1317(00)00015-6
  15. Parfitt, R.L. 1989. Phosphate reactions with natural allophane, ferrihydrite and goethite. J. Soil. Sci. 40:359-369. https://doi.org/10.1111/j.1365-2389.1989.tb01280.x
  16. Park, C.S., L.Y. Kim, and S.J. Cho. 1985. Classification of Volcanic Ash Soils and Contribution of organic Matter and Clay to Cation Exchange Capacity. J. Korean Soc. Soil Sci. Fert. 18:161-168.
  17. Schoonheydt, R.A. 1995. Clay mineral surfaces. In: Mineral Surfaces, Vaughan, D.J. and Pattrick, R.A.D. (eds.), The Mineralogical Society Series, 5, The Mineralogical Society of Great Britain and lreland, 303-332.
  18. Soil Survey Staff. 1998. Keys to soil taxonomy. 8th Ed. USDA-NRCS. US Government Printing Office, Washington, DC.
  19. Tan, K.H., R.A. Leonard, L.E. Asmussen, J.C. Lobartini, and A.R. Gingle. 1990. The geochemistry of black water in selected coastal streams of the Southeastern United States. Com. Soil Sci. & Plant Ana. 21:17.
  20. Templin, E.H., I.L. Martin, and R.S. Dyal. 1951. Red-yellow podzolic soils of the southeastern United States I& II. Agronomy J. 43:476-487. https://doi.org/10.2134/agronj1951.00021962004300100003x
  21. Van Olphen, H. 1992. Particle associations in clay suspensions and their rheological implications. In: Clay-Water lnterface and its Rheological lmplications, Guven, N. and Pollastro, R.M. (eds.), cms workshop lectures 4, The Clay Minerals Sociey, 191-210.
  22. Van Wambeke, A. 1992. Soils of the Tropics - Properties and Appraisal. McGraw-Hill. New York.
  23. Wilke, B.M., V.K. Mishra, and K.E. Rehfuess. 1984. Clay mineralogy of a soil sequence in slope deposits derived from Hauptdolomit (dolomite) in the Bavarian Alps. Geoderma 32:103-116. https://doi.org/10.1016/0016-7061(84)90066-1