Effect of Long-Term Annual Dressing of Organic Matter on Physico-Chemical Properties and Nitrogen Uptake in the Paddy Soil of Fluvio-Marine Deposit

하해혼성 평야지 논토양에서 유기물 장기 연용이 토양의 이화학적 특성 변화 및 질소 흡수에 미치는 영향

  • Yang, Chang-Hyu (Department of Rice and Winter Cereal Crop, NICS, RDA) ;
  • Jeong, Ji-Ho (Department of Rice and Winter Cereal Crop, NICS, RDA) ;
  • Kim, Taek-Kyum (Department of Rice and Winter Cereal Crop, NICS, RDA) ;
  • Kim, Sun (Department of Rice and Winter Cereal Crop, NICS, RDA) ;
  • Baek, Nam-Hyun (Department of Rice and Winter Cereal Crop, NICS, RDA) ;
  • Choi, Weon-Young (Department of Rice and Winter Cereal Crop, NICS, RDA) ;
  • Kim, Young-Doo (Department of Rice and Winter Cereal Crop, NICS, RDA) ;
  • Jung, Won-Kyo (National Academy of Agricultural Science, RDA) ;
  • Kim, Si-Ju (Department of Rice and Winter Cereal Crop, NICS, RDA)
  • 양창휴 (농촌진흥청 국립식량과학원 벼맥류부) ;
  • 정지호 (농촌진흥청 국립식량과학원 벼맥류부) ;
  • 김택겸 (농촌진흥청 국립식량과학원 벼맥류부) ;
  • 김선 (농촌진흥청 국립식량과학원 벼맥류부) ;
  • 백남현 (농촌진흥청 국립식량과학원 벼맥류부) ;
  • 최원영 (농촌진흥청 국립식량과학원 벼맥류부) ;
  • 김영두 (농촌진흥청 국립식량과학원 벼맥류부) ;
  • 정원교 (국립농업과학원) ;
  • 김시주 (농촌진흥청 국립식량과학원 벼맥류부)
  • Received : 2010.05.31
  • Accepted : 2010.12.03
  • Published : 2010.12.31

Abstract

This study was carried out to investigate the effects of fertilizer and organic resource annual dressing for 30 years of Jeonbug series (silt loam) on soil properties and rice N uptake in paddy field soil. In the study field, treatments including control (NPK), NPK+rice straw, NPK+rice straw compost and nitrogen fertilization levels at 0, 100, 150, 200, 250 kg $ha^{-1}$ have been imposed for 30 years. Soil hardness and bulk density decreased from 15.7 mm and 1.381 Mg $m^{-3}$ in the control to 12.5 mm and 1.244 Mg $m^{-3}$ in NPK+rice straw compost treatment, respectively, indicating improvement of soil physical conditions such as porosity. Co-application of straw compost with NPK also result in a better chemical properties than NPK alone as it increased available phosphate (from 96 to 133 mg $kg^{-1}$), available silicate (from 81 to 116 mg $kg^{-1}$), and cation exchange capacity (from 9.8 to 11.4 $cmol_c\;kg^{-1}$). Soil organic matter concentration of top soil (0 to 7.5 cm in depth) was higher in NPK+rice straw and NPK+rice straw compost than in control. Fertilizer N uptake amount was much higher in NPK+rice straw (nitrogen fertilization level; 250 kg $ha^{-1}$) and NPK+rice straw compost (nitrogen fertilization levels; 200, 250 kg $ha^{-1}$) plots compared to the control (nitrogen fertilization level; 100 kg $ha^{-1}$) plot. Nitrogen use efficiency was showed significantly high in the NPK+rice straw compost (nitrogen fertilization levels; 100, 150 kg $ha^{-1}$) plot compared to the control (nitrogen fertilization level; 100 kg $ha^{-1}$) plot. Therefore, it was suggested that application of organic inputs is helpful in improving soil fertility and physical conditions and thus in N uptake.

본 연구는 비료 및 유기자원을 30년 연용한 전북통 (미사질양토) 논토양에서 수행하였다. 관행 (NPK), NPK+볏짚, NPK+볏짚퇴비와 질소 시비수준을 0, 100, 150, 200, 250 kg $ha^{-1}$로 처리하였으며 토양의 이화학성 변화 및 유기탄소 함량, 토양과 식물체의 질소 흡수를 조사 및 분석한 결과는 다음과 같다. 관행구 (NPK)에 비하여 NPK+볏짚퇴비구에서 토양경도는 15.7 mm에서 12.5 mm로, 용적밀도는 1.381 Mg $m^{-3}$에서 1.244 Mg $m^{-3}$로 유의하게 낮아지는 결과를 보이고 있어 볏짚퇴비 시용에 따른 물리성 개선효과가 인정되었다. 관행구에 비하여 NPK+볏짚퇴비구에서 유효인산 함량은 96 mg $kg^{-1}$에서 133 mg $kg^{-1}$으로, 유효규산 함량은 81 mg $kg^{-1}$에서 116 mg $kg^{-1}$로 유의하게 많아졌고 CEC는 9.8 $cmol_c\;kg^{-1}$ 에서 11.4 $cmol_c\;kg^{-1}$로 유의하게 높아지는 결과를 보이고 있어 볏짚퇴비 시용에 따른 화학성 개량효과가 인정되었다. 토양유기탄소 함량은 처리별 유의적인 차이가 있었으며 토양깊이 0~7.5 cm에서는 관행구에 비하여 NPK+볏짚구, NPK+볏짚퇴비구에서 유의적으로 높았다. 시비 질소흡수량은 관행구 (질소 시비수준 100 kg $ha^{-1}$)에 비하여 NPK+볏짚구 (질소 시비수준 250 kg $ha^{-1}$) 및 NPK+볏짚퇴비구 (질소 시비수준 200, 250 kg $ha^{-1}$)에서 유의하게 많아지는 결과를 나타냈다. 질소이용률은 관행구 (질소 시비수준 100 kg $ha^{-1}$)에 비하여 NPK+볏짚퇴비구 (질소 시비수준 100, 150 kg $ha^{-1}$)에서 유의하게 높아지는 결과를 나타냈다. 논토양에서 유기자원 시용은 물리성 개선 및 비옥도를 향상시켜 벼의 시비질소흡수량 증가로 질소이용률을 높이는데 크게 기여한 것으로 생각된다.

Keywords

References

  1. Blanco-Canqui, H., R. Lal, W.M. Post, R.C. Izaurralde, and M.J. Shipitalo. 2006. Organic carbon influences on soil particle density and rheological properties. Soil Sci. Soc. Am. J. 70:1407-1414. https://doi.org/10.2136/sssaj2005.0355
  2. Frank, K.D. and F.W. Roeth. 1996. Using soil organic matter to help make fertilizer and pesticide recommendations. p. 33-40. In Jerry M. Bogham et al. (ed.) Soil organic matter: Anlysis and interpretation. SSSA Special publication No. 46. SSSA, Madison, WI, USA.
  3. Granstedt, A. and L. Kjellenberg. 1997. Long-term field experiment in Sweden : Effects of organic and inorganic fertilizers on soil fertility and crop quality. In Proceedings of an International Conference in Boston, University, Agricultural Production and Nutrition, Massachusetts March 19-21, 1997.
  4. Jenkinson, D.S. 1991. The rothamsted long-term experiments : Are they still in use, Journal of Agronomy, 83:2-10. https://doi.org/10.2134/agronj1991.00021962008300010008x
  5. Jung, W.K. and S.K. Kim. 2007. Soil organic carbon dynamics in Korean paddy soils. Korean J. Soil Sci. Fert. 40: 36-42.
  6. Jung, W.K., S.K. Kim, B.Y. Yeon, and J.S. Noh. 2007. Long-term impacts of single rice cropping system on SOC dynamics. Korean J. Soil Sci. Fert. 40:292-297.
  7. Kim, C.B., D.H. Lee, and J. Choi. 2002. Effects of soil improvement on the dependence of rice nutrient contents and grain quality. Korean J. Soil Sci. Fert. 35:296-305.
  8. Kim, L.Y., H.J. Cho, and K.H. Han. 2004. Changes of physical properties of soil by organic material application in farm land. J. Korean Soc. Soil Sci. Fert. 37:304-314.
  9. Kwak, H.K., C.S. Lee, and S.K. Lim. 1990. Influence of soil amendments on phosphorus response and changes of available phosphate amount in paddy soil. Res. Rept. RDA. 32:52-56.
  10. Lal, R., J. Kimble, and R.F. Follett. 1997. Pedospheric processes and the carboncycle. p. 1-8. In Rattan Lal et al. (ed.) Soil process and the carbon cycle. CRC press. Boca Raton, FL, USA.
  11. Miyaguchi, T. and Harada. 1969. Effect of green manure extracts to fate of nitrogen, iron and phosphorus in soil. Bull. Saga university. Japan. 28:1-16.
  12. Nemes, A., Walter. J.R, and Y.A. Pachepsky. 2005. Influence of organic matter on the estimation of saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 69:1330-1337. https://doi.org/10.2136/sssaj2004.0055
  13. NIAST. 2000. Method of soil and crop plant analysis. National Institute of Agricultural Science and Technology, Suwon, Korea.
  14. Park, C.Y., J. Choi, K.D. Park, W.T. Jeon, H.Y. Kwon, and U.G. Kang. 2000. Change of physical properties on long-term fertilization of compost and silicate in paddy soils. Korean J. Soil Sci. Fert. 33:175-181.
  15. SAS Institute. 2006. SAS Version 9.1.3. SAS Inst., Cary, NC.
  16. Weil, R.R. and F. Magdoff. 2004. Significance of soil organic matter to soil quality and health. p. 1-43. In Fred Magdoff and Ray R. Weil (ed.) Soil organic matter in sustainable agriculture. CRC press. Boca Raton, FL, USA.
  17. Yeon, B.Y., H.K. Kwak, Y.S. Song, H.J. Jun, H.J. Cho, and C.H. Kim. 2007. Changes in rice yield and soil organic matter content under continued application of rice straw compost for 50 years in paddy soil. Korean J. Soil Sci. Fert. 40:454-459.
  18. Yoon, J.H. 1983. Parameters of soil phosphorus availability factors in predicting yield response and fertilizer recommendation (Ph. D. Thesis). Dong-Guk Univ. Seoul, Korea.
  19. 土壤標準分析. 測定法委員會. 1990. 土壤標準分析. 測定法. 博友社. 東京, 日本.
  20. 志賀一, 長谷川撤, 冲村逸夫. 1982. 無堆肥, 化學肥料單用 及び堆肥連用水田土壤における 施肥窒素動向. 愛知農試硏報 14:53-59.