Effects of Green Manure Crops on Improvement of Chemical and Biological Properties in Soil

토양 화학성 및 생물학성 변화에 대한 녹비작물 시용 효과

  • Received : 2010.08.31
  • Accepted : 2010.10.22
  • Published : 2010.10.30

Abstract

We used green manure crops such as hairy vetch, crimson clover, rye, sorghum, and sudan grass by mixing with soils to assess the effects of green manure crops on nutrient supply and soil quality improvement. Temporal changes in soil inorganic nitrogen, carbohydrate, microbial biomass, and humus content were determined as soil quality indicators. Inorganic nitrogen content of the control maintained similar level during the whole period, but it had continually increased until 4 weeks after incorporation (WAI) of green manure crops. Especially, inorganic nitrogen content sharply increased in sudan grass. After incorporation of green manure crops, temporal change of soluble sugar in soils was as follows: it had gradually increased in legume green manure crops-incorporated soils until 7 WAI, which was the highest, and then showed the tendency to be reduced. Meanwhile, it in non-legume green manure crops-incorporated soils rapidly increased after the incorporation, and reached the maximum around 4 WAI. Humic acid by the decomposition of crop residues in green manure crops-incorporated soils was greatly enhanced with the elapsed time of 4 WAI, although it was low at the same level as the control until 2 weeks. In addition, there was a difference in fulvic acid by incorporated crops, fulvic acid in hairy vetch, sorghum and sudan grass showed a similar tendency with the change in humic acid. Our results suggest that soluble sugar, microbial activity and humic acid could be available indicators to evaluate the fertility of green manure crops-incorporated soils.

시설재배지의 경우 휴작기간 동안 녹비작물의 활용가능성이 높을 것으로 판단된다. 본 연구는 녹비작물이 시설재배지에서의 양분공급 및 토양질 개선에 미치는 영향을 평가하고자 두과 (헤어리베치, 크림손클로버) 및 화본과 (호밀, 수수, 수단그라스) 녹비작물을 재배 후 토양과 혼합하였으며, 무기질소 공급능과 생물적 지표로써 토양 탄수화물, 미생물활성 및 부식함량의 경시적 변화를 측정하였다. 관행구의 무기태 질소함량은 전 기간 비슷한 수준을 유지하였으나 녹비작물을 처리한 토양에서는 토양처리 후 4주까지 무기태질소 함량이 지속적으로 증가하였고, 특히 수단그라스에서 무기태질소 함량이 두드러지게 증가하였다. 녹비작물 처리 후 토양 중 수용성 당은 두과 녹비작물 처리 후 서서히 증가하기 시작하여 7주 경에 가장 높았으며 이후 서서히 감소하는 경향이 나타났다. 반면 화본과 녹비작물 처리 후 수용성 당이 빠르게 증가하여 처리 후 4주 경에 최대치에 도달한 후 감소하는 양상이 나타났다. 토양 내의 부식산 (humicacid)은 아무것도 첨가하지 않은 관행구와 녹비처리 초기에는 비슷한 수준으로 낮았으나 녹비처리 후 4주 정도 시간이 경과하면서 녹비작물의 부숙에 의해 형성된 부식산이 점점 증가하는 것을 확인할 수 있었다. 또한 양이온과 결합하여 물에 잘 용해되는 염을 만드는 fulvic 산에서도 작물 간 차이는 있었지만 부식산의 함량 변화와 비슷한 경향이었다.

Keywords

References

  1. Abdul-Baki, A.A. and J.R. Teasdale. 1993. A no-tillage tomato production system using hairy vetch and subterranean clover mulches. HortScience 28:106-108.
  2. Anonymous. 1991. Organic production of agricultural products and indications referring thereto on agricultural products and food stuffs. Official Journal of the European Community No. L 198:1-15.
  3. Beyer, L., K. Sieling, and K. Pingpank. 1999. The impact of a low humus input level in arable soils on microbial properties, soil organic matter quality and crop yield. Biol. Fertil. Soils. 28:156-161.
  4. Broos, K., L.M. Macdonald, J. Warne, D.A. Heemsbergen, M.B. Barnes, M. Bell, and M.J. McLaughlin. 2007. Limitations of soil microbial biomass carbon as an indicator of soil pollution in the field, Soil Biol. Biochem. 39:2693–2695.
  5. Campbell C.A, V.O. Biederbeck, R.P. Zentner, and G.P. Lafond. 1991. Effect of crop rotations and cultural practices on soil organic matter, microbial biomass and respiration in a thin black Chernozem. Can. J. Soil Sci. 71:363-376. https://doi.org/10.4141/cjss91-035
  6. Campbell, C.A., V.O. Biederbeck, B.G. McConkey, D. Curtin, and R.P. Zentner. 1999. Soil auality-effect of tillage and fallow frequency. Soil organic matter quality as influenced by tillage and fallow frequency in a silt loam in southwestern Saskatchewan. Soil Biol. Biochem. 31:1-7.
  7. Carter, R.M. 1991. Ninhydrin-reactive N released bythe fumigation-extraction method as a measure of microbial biomass under field conditions. Soil Biol. Biochem. 23 :139-143. https://doi.org/10.1016/0038-0717(91)90126-5
  8. Cherr, C.M., J.M.S. Scholberg, and R. McSorle. 2006. Green manure approaches to crop production: A synthesis. Agron. J. 98:302-319. https://doi.org/10.2134/agronj2005.0035
  9. De Luca, T.H. and D.R. Keeney. 1993. Soluble anthronereactive carbon in soils: effect of carbon and nitrogen amendments. Soil Sci. Soc. Am. J. 57:1296-1300. https://doi.org/10.2136/sssaj1993.03615995005700050022x
  10. Ding, G., J.M. Novak, D. Amarasiriwardena, P.G. Hunt, and B. Xing. 2002. Soil organic matter as affected by tillage management. Soil Sci. Soc. Am. J. 66:421-429. https://doi.org/10.2136/sssaj2002.0421
  11. Francis, G.S., R.J. Haynes, and P.H. Williams. 1995. Effects of the timing of ploughing-in temporary leguminous pastures and two winter cover crops on nitrogen mineralization, nitrate leaching and spring wheat growth. J. Agric. Sci. 124:1-9. https://doi.org/10.1017/S0021859600071185
  12. Friedel, J.K., J.C. Munch, and W. R. Fischer. 1996. Soil microbial properties and the assessment of available soil organic matter in a haplic luvisol after several years of different cultivation and crop rotation. Soil Biol. Biochem. 28:479-488. https://doi.org/10.1016/0038-0717(95)00188-3
  13. Garcia, C., T. Hernandez, and F. Costa. 1994. Microbial activity in soils under Mediterranean environmental conditions. Soil Biol. Biochem. 26:1185-1191. https://doi.org/10.1016/0038-0717(94)90142-2
  14. Jenkinson, D.S. and J.N. Ladd. 1981. Microbial biomass in soil: Measurement and turnover. In: Paul, E.A. and J.N. Ladd, Editors, Soil Biochemistry Vol. 5, Dekker, New York, pp. 415-471.
  15. Keeney, D.R. and D.W. Nelson. 1982. Nitrogen inorganic forms. pp. 643-698. In A. L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA Madison. WI.
  16. Kopp, J.F. and G.D. McKee. 1978. Methods for chemical analysis of water and wastes. Nitrogen ammonia-Method 350. 1. USEPA Environ. Monitoring and Support Lab., Cincinnati.
  17. Kuo, S., U.M. Sainju, and E.J. Jellum. 1997. Winter cover crop effects on soil organic carbon and carbohydrate. Soil Sci. Soc. Am. J. 61:145-152. https://doi.org/10.2136/sssaj1997.03615995006100010022x
  18. Lee. I.B., S.B. Kang, and J.M. Park. 2008. Effect of soil incorporation of graminaceous and leguminous manures on tomato (Lycoperiscon esculentum Mill.) growth and soil nutrient balances. Korean J. Environ. Agric. 27: 343-348. https://doi.org/10.5338/KJEA.2008.27.4.343
  19. Lin C.C., A.B. Arun, P.D. Rekha, and C.C. Young. 2008. Application of wastewater from paper and food seasoning industries with green manure to increase soil organic carbon: A laboratory study. Bioresour. Technol. 99: 6190-6197. https://doi.org/10.1016/j.biortech.2007.12.025
  20. Mackowiak, C.L., P.R. Grossl, and B.G. Bugbee. 2001. Beneficial effects of humic acid on micronutrient availability to wheat. Soil Sci. Soc. Am. J. 65:1744-1750. https://doi.org/10.2136/sssaj2001.1744
  21. Ocio, J.A., P.C. Brookes, and D.S. Jenkinson. 1991. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N. Soil Biol. Biochem. 23 :171-176. https://doi.org/10.1016/0038-0717(91)90131-3
  22. Powlson, D.S. and D.S. Jenkinson. 1976. The effects of biocidal treatments on metabolism in soil. II. Gamma irradiation, autoclaving, air-drying and fumigation, Soil Biol. Biochem. 8:179-188. https://doi.org/10.1016/0038-0717(76)90002-X
  23. Powlson, D.S., P.C. Brookes, and B.T. Christensen. 1987. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 19:159-164. https://doi.org/10.1016/0038-0717(87)90076-9
  24. RDA (Rural Development Administratiom). 1988. Analyses of soil and plant. RDA, Korea.
  25. Reinertsen, S.A., L.F. Elliott, V.L. Cochran, and G.S. Campbell. 1984. The role of available C and N in determining the rate of wheat straw decomposition. Soil Biol. Biochem. 16:459-464. https://doi.org/10.1016/0038-0717(84)90052-X
  26. Roberson, E. B., S. Sarig, C. Shennan, and M. K. Firestone. 1995. Nutritional management of microbial polysaccharide production and aggregation in an agricultural soil. Soil Sci. Soc. Am. J. 59:1587-1594. https://doi.org/10.2136/sssaj1995.03615995005900060012x
  27. Robinson C.A., R.M. Cruse, and M. Ghaffarzadeh. 1996. Cropping systems and nitrogen effects on mollisol organic carbon. Soil Sci. Soc. Am. J. 60:264-269. https://doi.org/10.2136/sssaj1996.03615995006000010040x
  28. Roe. J.H. 1955. The determination of sugar in blood and spinal fluid with anthrone reagent. J. Biol. Chem. 212 :335-343.
  29. Sainju, U.M., B.P. Singh, and S. Yaffa. 1999. Tomato yield and soil quality as influenced by tillate, cover cropping, and nitrogen fertilization. In: Hook, J.E. (Ed.), Proceedings of the 22nd Annual Southern Conservation Tillage Conference for Sustainable Agriculture. Tifton. GA. July6-8. Spec. Pub. 95. Agric. Exp. Sta., Athens. GA. pp. 104-113.
  30. Schnitzer, M. 1969. Reactions between fulvic acid, a soil humic compound and inorganic soil constituents. Soil Sci. Soc. Am. J. 33:75-81. https://doi.org/10.2136/sssaj1969.03615995003300010022x
  31. Simon, K. and H. Speichermann, 1938. Beitrage zur Humusuntersuchungs methodik, Bodenk. Pflanzenernahr. 8:129-152.
  32. Stockdale, E.A. and P.C. Brookes. 2006. Detection and quantification of the soil microbial biomass-impacts on the management of agricultural soils. J. Agric. Sci. 144 :285–302.
  33. Thorup-Kristensen, K. 1994. The effect of nitrogen catch crop species on the nitrogen nutrition of succeeding crops. Fertilizer Research 37:227–234.
  34. Thorup-Kristensen, K. and M. Bertelsen. 1996. Green manure crops in organic vegetable production. In: Kristensen, N.H., Hoeg-Jensen, H. New Research in Organic Agriculture. Proceedings from the 11th International Scientific IFOAM Conference, Copenhagen, pp. 75–79.
  35. Trasar-Cepeda C, C. Leiros, F. Gil-Sotres, and S. Seoane. 1998. Towards a biochemical quality index for soils: an expression relating several biological and biochemical properties. Biol. Fertil. Soils 26:100-106.
  36. Vance, E.D., P.C. Brookes, and D.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19:703-707. https://doi.org/10.1016/0038-0717(87)90052-6
  37. van Hees, P.A.W., D.L. Jones, and D.L. Godbold. 2002. Biodegradation of low molecular weight organic acids in coniferous forest podzolic soils. Soil Biol. Biochem. 34 :1261-1272. https://doi.org/10.1016/S0038-0717(02)00068-8
  38. Wagger, M.G. 1989. Time of desiccation effects on plant composition and subsequent nitrogen release from several winter annual cover crops. Agron. J. 81:236-241. https://doi.org/10.2134/agronj1989.00021962008100020020x
  39. Wyland, L.J., L.E. Jackson, and K.F. Schulbach. 1995. Soil-plant nitrogen dynamics following incorporation of a mature rye cover crop in a lettuce production system. J. Agric. Sci. 124:17-25. https://doi.org/10.1017/S0021859600071203
  40. Wyland, L.J., L.E. Jackson, W.E. Chaney, K. Klonsky, and S.T. Koike. 1996. Winter cover crops in a vegetable cropping system: impacts on yield, nitrate leaching, pests and management costs. Agric. Ecosyst. Environ. 59:1-17. https://doi.org/10.1016/0167-8809(96)01048-1
  41. Zhong, W., T. Gu, W. Wang, B. Zhang, X. Lin, Q. Huang, and W. Shen. 2010. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 326:511-522. https://doi.org/10.1007/s11104-009-9988-y