Chromium Distribution in Korean Soils: A Review

우리나라 토양의 크롬 분포특성에 관한 고찰

  • Kim, Rog-Young (Division Soil & Fertilizer Management, National Academy of Agricultural Science, RDA) ;
  • Sung, Jwa-Kyung (Division Soil & Fertilizer Management, National Academy of Agricultural Science, RDA) ;
  • Lee, Ju-Young (Division Soil & Fertilizer Management, National Academy of Agricultural Science, RDA) ;
  • Kim, Seok-Cheol (Division Soil & Fertilizer Management, National Academy of Agricultural Science, RDA) ;
  • Jang, Byoung-Choon (Division Soil & Fertilizer Management, National Academy of Agricultural Science, RDA) ;
  • Kim, Won-Il (Division Chemical Safety, National Academy of Agricultural Science, RDA) ;
  • Ok, Yong-Sik (Department of Biological Environment, Kangwon National University)
  • 김록영 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 성좌경 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 이주영 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 김석철 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 장병춘 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 김원일 (농촌진흥청 국립농업과학원 유해화학과) ;
  • 옥용식 (강원대학교 바이오자원환경학과)
  • Received : 2010.05.31
  • Accepted : 2010.06.14
  • Published : 2010.06.30

Abstract

Chromium as a constituent of rocks occurs naturally in the environment in varying concentrations. However, the human activity has changed the geochemical cycle of chromium in the environment and has caused the chromium accumulation in soils. Korean soils revealed a wide range of chromium contents depending on parent material and land use. The total chromium contents of volcanic ash soils in Jeju, which were determined using $HNO_3$ + $HClO_4$ + HF, ranged from 434 to 1,164 mg $kg^{-1}$. The 'ecological' total chromium contents extracted using conc. HCl + conc. $HNO_3$ (aqua regia) in the same soils varied in a lower range of 50-189 mg $kg^{-1}$ (averaged percentage of aqua regia contents in $HNO_3$ + $HClO_4$ + HF contents: 14.9%). Serpentine soils in Andong showed a 'ecological' total chromium content of 309 mg $kg^{-1}$ and against it granitic soils in Andong only 20 mg $kg^{-1}$. In uncontaminated forest soils of Korea, the 'ecological' total chromium contents varied from 4.89 to 106 mg $kg^{-1}$ and the soluble chromium contents determined using 0.1 M HCl ranged from 0.01 to 0.64 mg $kg^{-1}$ (averaged percentage of 0.1 M HCl contents in aqua regia contents: 0.4%). Arable lands contained more soluble chromium than reported in forest soils (averaged soluble chromium: 0.36 and 0.09 mg $kg^{-1}$, respectively). In particular, the soluble chromium contents in greenhouse, orchard and upland soils were higher than in contaminated soils near mine and industrial site (maximum contents: greenhouse 15.3 mg $kg^{-1}$; upland 12.1 mg $kg^{-1}$; orchard 8.29 mg $kg^{-1}$; mine site 4.76 mg $kg^{-1}$; industrial site 2.80 mg $kg^{-1}$). On the basis of these results a accumulation of chromium in some specific arable lands can be assumed, probably by long-continued applications of fertilizers or soil amendments containing chromium. In Korean Enforcement Decree of the Soil Environment Conservation Act soil standards for total chromium do not exist yet.

Keywords

References

  1. Ahn, J. S., C.-M. Chon, K.-Y. Kim, K.-S. Ko, and K.-H. Park. 2006. Geochemical characteristics and heavy metal distribution in selected volcanic ash soils in Jeju island. Journal of the Korean Society for Geosystem Engineering. 43:602-614.
  2. Blume, H.-P., G.W. Bruemmer, R. Hom, E. Kandeier, I. Koegel-Knabner, R. Kretzschmar, K. Stahr, and B.M. Wilke. 2010. Scheffer/Schachtschabel-Lehrbuch der Bodenkunde (16th ed.). Spektrum Akademischer Verlag, Heidelberg, Berlin, p. 569.
  3. Bruemmer, G.W., V. Homburg, and D.A. Hiller. 1991. Schwennetallbelastung von Boeden. Mitteilgn. Disch. Bodenkundl. Gesellsch. 63:3142.
  4. Cannon, H.L., G,G. Connally, J.B. Epstein, J.G. Parker, I. Thornton, and G. Wixson. 1978. Rocks: The geologic source of most trace clements. In: H.t. Cannon (cd.). Geochemistry and the Environment - Distribution of trace elements related to the occurrence of certain cancers, cardiovascular diseases. and urolithiasis. A Report of the workshop at South Seas Plantation, Captiva Island. FL. Geochem. Environ. 3: 17-31. Washington, DC.
  5. Cary. E.E. 1982. Chromium in air. soil and natural waters. In: S. Langaard (ed.). Biological and environmental aspects of chromium. Topics in Environmental Health 5. Elsevier Biomedical Press., pp. 49-64. New York, NY.
  6. Cooper, G.R.C. 2002. Oxidation and toxicity of chromium in ultramafic soi ls in Zimbabwe. Appl. Geochem. 17:981-986. https://doi.org/10.1016/S0883-2927(02)00014-8
  7. Dana, P. 1971. Crocoite-$PbCrO_4$. p. 346-347. In: C.S. Hurlbut (ed.). Dana's manual of mineralogy (18th ed.). Wiley and Sons, New York.
  8. Deltombe, E., N. De Zoubov, and M. Pourbaix . 1966. Chromium. p. 256-271. In: M. Pourbaix (ed.). Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Oxford.
  9. DHI Water and Environment (Danish Hydraulic Institute). 2000. Udvaskeligt chrom i jord Bestemt som ehrom ekstraheret under basike forhold. VorschriR des DHI. Hersholm, Denmark.
  10. DIN 19734 (Deutsches Institul ruer Nonnung). 1999. Bestimmung von Chrom(VI) in phosphatgepuffener Loesung. Beuth, Berlin.
  11. Dionex. 1996. Determination of Cr(VI) in water, waste water, and solid waste extracts. Technical Note. 26: 1-6. LPN 034398-02 IM 1/96, Dionex Corporation. Sunnyvale, CA.
  12. EU Commission. 2006. Commission decision of 3 November 2006 establishing revised ecological criteria and the related assessment and verification requirements for the award of the Community eco-Iabel to soil improvers. Official Journal of the European Union. 20061799/EC.
  13. Fendorf, S.E. and D.L. Sparks. 1994. Mechanisms of chromium(lIl) sorption on silica. 2. Effect of reaction conditions. Environ. Sci. Technol. 28:290-297. https://doi.org/10.1021/es00051a016
  14. Fendorf, S.E.. M.J. Eick, P. GrossI, and D.L. Sparks. 1997. Arsenate and chromate retention mechanisms on goethite. I. Surface structure. Environ. Sci. Techno. 31:315-320. https://doi.org/10.1021/es950653t
  15. Fishbein, L. 1984. Overview of analysis of carcinogenic and/or mutagenic metals in biological and environmcntal samples: I. Arsenic, beryllium, cadmium, chromium and selenium. International Journal of Environmental Analytical Chemistry. 17: 113-170. https://doi.org/10.1080/03067318408079924
  16. Gennan BBodSchV (Gennan Federal Soil Protection and Contaminated Sites Ordinance). 1999. BBodSchV vom 12. Juli 1999 (BGBI. I S. 1554), geaendert durch Anikel 2 der Verordnung vom 23. Dezember 2004 (BGBI. I S. 3758). Bundesministerium fuer Umwelt, Naturschutz und Reaktorsicherheit (BMU), Berlin.
  17. German LABO (NationaVFederal States working group on soil protection). 2000. Cadmium accumulation in soils/ standard valuation of fertilizers. UMK-AMKLABO-AG report, presented by 26th ACK.
  18. Honburg, V. and B. Lueer. 1999. Vergleich zwischen Total- und konigswasser-extrahierbaren Elementgehaiten in natueichen Boeden und Sedimenten. J. Plant Nutr. Soil Sci. 162:131- 137. https://doi.org/10.1002/(SICI)1522-2624(199903)162:2<131::AID-JPLN131>3.0.CO;2-1
  19. James, B.R. 1996. The challenge of remcdiating chromium-contaminated soils. Environ. Sci. Technol. 30:248A-251A. https://doi.org/10.1021/es962269h
  20. Japanese EA (Environment Agcncy, Japan). 1984. Survey for Environmental Standardization of Soil Contamination (Background values investigation).
  21. Kim, R.-Y. 1999. Shon effects of strip wise tillage in combination with liming on chemical and physical properties of forest soils. Diploma Thesis, University of Bonn, p. 136.
  22. Kim, R.-Y., G. Welp, and G.W. Bruemmer. 2001. Contents and stability of Cr(VI) in contaminated and non-contaminated soils from North Rhine-Westphalia. Milleilgn. Dtsch. Bodenkundl. Gesellsch. 96:219-220.
  23. Kim, T.S., D.H. Kim, J.K.Yoon, J.G. Park, I.R. Chung, J.H. Kim, and H. Kim. 2006. Heavy metal distribution in Korean soils with regard to land use and analytical method. Abstract. Conference of the Korean Society for Soil and Groundwater Environment. 14.04. 2006. Dongguk University, Seoul.
  24. Kim, R.-Y. 2009. Chromium(VI) analysis. chromium(VI) contaminations of soils from North Rhine-Westphalia (Germany), and modcl experiments for chromium(VI) reduction and chromium(lII) oxidation in soils. Ph.D. Thesis, University of Bonn, p. 192.
  25. Korean ME (Ministry of Environmenl, Republic of Korea). 2009a. Enforcement Decree of the Soil Environment Conservation Act. 12th. amended. No. 333. 2009. 6.25.
  26. Korean ME (Ministry of Environmenl, Republic of Korea). 2009b. Soil Contamination Standards Methods. 2009.09.
  27. Mesuere, K. and W. Fish. 1992. Chromate and oxalate adsorption on goethite. I. Calibration of surface complexation models. Environ. Sci. Technol. 26:2357- 2364. https://doi.org/10.1021/es00036a004
  28. Min, E.-S., S.-H. Song, and M.-H. Kim. 1998. Heavy metal pollution in soil and vegetation near the closed Daeseong coal mine in Keumsan, Chungnam. Journal of KoSES. 13:41-51.
  29. Min, E.-S., S.-H. Song, and M.-H. Kim. 1999. Heavy metal concentrations of rocks, soils and plants from the serpentine area in Andong, Kyungsangbuk-do. Kor. J. Env. Eco. 13:288-294.
  30. Nakayama, E., T. Kuwamoto, S. Tsurubo, H. Tokoro, and T. Fujinaga. 1981. Chemical speciation of chromium in sea water. Pan 1. Effect of naturally occurring organic materials on the complex fonnation of chromium(IlI). Anal. Chim. Acta. 130:289-294. https://doi.org/10.1016/S0003-2670(01)93006-5
  31. Papp, J.F. 1994. Chromium life cycle study. Bureau of Mines, Infonnation circular 9411 , U.S. Department of the Interior, Washington, DC, p. 94.
  32. Papp, J.F. 2009. USGS Minerals Yearbook 2007 - Chromium[Advance release]. U.S. Department of the Interior and U.S. Geological Survey, p. 29.
  33. Rai, D., B.M. Sass, and D.A. Moore. 1987. Chromium(lII) hydrolysis constants and solubility of chromium(lII) hydroxide. Inorg. Chem., 26:345-349. https://doi.org/10.1021/ic00250a002
  34. Rai, D., L.E. Eary, and J.M. lachara. 1989. Environmental chemistry of chromium. Sci. Total Environ. 86: 15-23. https://doi.org/10.1016/0048-9697(89)90189-7
  35. RDA. 2009a. Monitoring project on agri-environment quality in Korea: Final report for 10 years ('99-'08). National Academy of Agricultural Science.
  36. RDA. 2009b. Official definition and standards for fenilizer. No. 2009-30.
  37. Stieher, H., S. Juchler, and U. Gasser. 1987. Speciation von Chrom und Nickel in Serpentinboeden. Mitteilgn. Dtsch. Bodenkundl. Gesellsch. 55:433-438.
  38. US EPA. 1984. Health effects assessment for trivalent chromium. United States Environmental Protection Agency, Office of Solid Waste Emergency Response. Washington, DC.
  39. WHO (World Health Organization). 1988. Environmental Health Criteria 61. Chromium. Geneva, Switzerland.
  40. Yoon, J.K., D.H. Kim, T.S. Kim, J.G. Park, I.R. Chung, J.H. Kim, and H. Kim. 2009. Evaluation on natural background of the soil heavy metals in Korea. J. Soil & Groundwater Env. 14:32-29.
  41. Zachara, J.M., D.C. Girvin, R.L. Schmidt, and C.T. Resch. 1987. Chromate adsorption on amorphous iron oxyhydroxide in the presence of major groundwater ions. Environ. Sci. Technol. 21:589-594. https://doi.org/10.1021/es00160a010