Changes of Soil Physical Properties by Glomalin Concentration and Rice Yield using Different Green Manure Crops in Paddy

녹비작물 환원 시 Glomalin 함량에 따른 토양물리성 및 벼 수량 변화

  • 전원태 (농촌진흥청 국립식량과학원) ;
  • 성기영 (농촌진흥청 국립식량과학원) ;
  • 김민태 (농촌진흥청 국립식량과학원) ;
  • 오계정 (농촌진흥청 국립식량과학원) ;
  • 오인석 (농촌진흥청 국립식량과학원) ;
  • 강위금 (농촌진흥청 국립식량과학원)
  • Received : 2010.03.17
  • Accepted : 2010.04.13
  • Published : 2010.04.30

Abstract

This experiment was conducted at Sinheung series (fine loamy, mixed, nonacid, mesic family of Fluvaquentic Endoaquepts) in 2007 to 2008 at the National Institute of Crop Science (NICS), RDA, Suwon, Gyeonggi province, Korea. Three kinds of green manure crops (hairy vetch, barley, rye) incorporated in soil for rice cultivation. 6.3 kg N $10a^{-1}$, and3.2 kg $P_2O_5$ $10a^{-1}$ were applied to rye and barley plot before rice transplanting. Chemical fertilizers had not been applied to hairy vetch plot. Glomalin concentration, soil bulk density, and porosity were measured in soil from different green manure crops incorporation after rice harvesting in paddy. Soil bulk density and porosity after rice harvesting improved at surface soil of hairy vetch incorporation plot. Degree of water stable aggregates increased all green manure incorporation plots. Glomalin concentrations significantly increased at hairy vetch incorporation treatment. In barley plot, the concentration of glomalin increased at 10-20 soil depth. There were no differences relationship between soil carbon, and glomalin concentration, but relationship between soil aggregate stability, and glomalin concentration significantly positive under green manure crop-rice cropping system. Rice yield decreased at hairy vetch incorporation plot because of field lodging. We suggested that hairy vetch incorporation should be considered about application amount, and water management using rice cultivation because of soil properties changes.

녹비작물 헤어리베치, 보리, 호밀을 이용하여 벼 재배 시에 토양 물리성, glomalin 함량 및 벼 수량 변화를 구명하고자 본 시험을 수행하였다. 보리와 호밀은 10a 당 질소와 인산을 각각 6.3 kg과 3.2 kg을 시용하였고 헤어리베치는 화학비료 시용 없이 벼를 재배하였다. 시험장소는 경기도 수원시에 소재하고 있는 국립식량과학원 벼연구포장인 신흥통에서 중생종인 풍미벼를 재배하였다. 녹비작물 이용 벼 수확 후 토심 10-20cm에서의 토양물리성이 뚜렷한 차이가 없었으나 0-10cm에서 용적 밀도가 감소하고 공극룰이 증가하였다. 헤어리베치 투입구에서 용적밀도와 공극률이 뚜렷이 개선되었다. 내수성 입단화율은 모든 녹비투입구에서 증가되는 경향이었다. Glomalin의 함량은 1모작 관행시비구에 비하여 모두 증가하는 경향이었고 헤어리베치구에서 유의적으로 증가하였다. 심토에서는 헤어리베치와 같이 보리 시용구에서도 증가되었다. Glomalin 함량과 내수성입단화율이 정의 유의한 상관관계가 인정되었고 토양탄소함량과는 상관관계가 없었다. 벼 수량은 관행시비한 1모작에 비하여 보리+화학비료 시비구는 비슷하였으나 호밀+화학비료 투입구는 낮았다. 화학비료를 전혀 투입하지 않은 헤어리베치구의 벼 수량은 포장도복으로 감소하였다. 따라서 논토양에서 녹비작물 헤어리베치 이용 벼 재배 시 토양의 물리성이 변화하기 때문에 투입량, 본답 물관리 등에 유의해야 될 것으로 생각되었다.

Keywords

References

  1. Bronick, C.J., and R. Lai., 2005. Soil structure and management: a review. Geoderma 124:3-22. https://doi.org/10.1016/j.geoderma.2004.03.005
  2. Clark, A. 2007. Managing cover crops profitably (third edition). Sustainable agriculture network. MD, USA.
  3. Fred, M., and E., Harold. 2000. Building soils for better crops. 10. cover crops p. 87. Sustainable Agriculture Network.
  4. Jeon, W.T., M.T. Kim, K.Y. Seong. and I.S. Oh. 2008. Changes of soil properties and temperature by green manure under rice-based cropping system. Korean J. Crop Sci. 53: 413-416.
  5. Lee, H.J. 1983. Korean Agricultural Technology History Chart 5. Production technology of forge and green manure crops. Jungminsa. pp.433-459.
  6. Nichols, KA., and S.F. Wright. 2005. Comparison of glomalin and humic acid in eight native U.S. soils. Soil Sci. 170:958-997.
  7. Park, S.T., W.T. Jeon, M.T. Kim, K.Y. Sung, J.H. Ku, I.S. Oh, B.K. Lee, Y.H. Yoon, J.K. Lee, K.H. Lee, and J.H. Yu. 2008. Understanding of environmental friendly agriculture and rice production using green manure crops. RDA, NICS. Sammi. Suwon. pp.20-21.
  8. RDA. 1988. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon, Korea.
  9. RDA. 2003. Standard methods for agricultural experiments.Rural Development Administration, Suwon, Korea.
  10. Rillig, M.C., and D.L. Mummey. 2006. Mycorrhizas and soil structure. New Phytologist 171:41-53. https://doi.org/10.1111/j.1469-8137.2006.01750.x
  11. Rillig, M.C., B.A. Caldwell, H.A.B. Wosten, and P. Sollins. 2007. Role of proteins in soil carbon and nitrogen storage: controls on persistence. Biogeochemistry 85:25-44. https://doi.org/10.1007/s10533-007-9102-6
  12. Whiffen, L.K., D.J. Midgley. and P.A. McGee. 2007. Polyphenolic compounds interfere with quantification of protein in soil extracts using the Bradford method. Soil Biol. Biochem. 39:691-694. https://doi.org/10.1016/j.soilbio.2006.08.012
  13. Wright, S.F., and A. Upadhyaya. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungl. Soil sci. 161:575-586. https://doi.org/10.1097/00010694-199609000-00003
  14. Wright, S.F., M. Franke-Snyder, J.B. Morton, and A. Upadhyaya. 1996. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193-203. https://doi.org/10.1007/BF00012053
  15. Wright, S.F., V.S. Green, and M.A. Cavigelli. 2007. Glomalin in aggregate size classes from three different farming systems. Soil Till. Res. 94:546-549. https://doi.org/10.1016/j.still.2006.08.003