Relationship between Fertilizer Application Level and Soil Chemical Properties for Strawberry Cultivation under Greenhouse in Chungnam Province

충남지역 시설 딸기재배지 시비수준과 토양 화학성과의 관계

  • Choi, Moon-Tae (Chungcheongnam-do Agricultural Research and Extension Services) ;
  • Lee, Jin-Il (Chungcheongnam-do Agricultural Research and Extension Services) ;
  • Yun, Yeo-Uk (Chungcheongnam-do Agricultural Research and Extension Services) ;
  • Lee, Jong-Eun (Chungcheongnam-do Agricultural Research and Extension Services) ;
  • Lee, Bong-Chun (Chungcheongnam-do Agricultural Research and Extension Services) ;
  • Yang, Euy-Seog (Chungcheongnam-do Agricultural Research and Extension Services) ;
  • Lee, Young-Han (Gyeongsangnam-do Agricultural Research and Extension Services)
  • Received : 2010.03.29
  • Accepted : 2010.04.06
  • Published : 2010.04.30

Abstract

Nowadays, Korean farmers rely more on chemical fertilizers than low input sustainable agriculture drawn from the farm itself. In order to improve soil nutritional imbalance for environment friendly agriculture in greenhouse, we have carried out a relationship between fertilizer application level, and soil chemical properties for strawberry cultivation at 56 sites in Chungnam Province. Average amount of nitrogen as basal fertilization was 92.3 Mg $ha^{-1}$ which higher 2.6 times compared to standard amount of basal fertilizer. In case of compost application more than 30 Mg $ha^{-1}$, excessive ratio compared to optimum level was higher 1.8 times for EC value, 3.0 times for available phosphate, 2.6 times for exchangeable potassium, 1.7 times for exchangeable calcium, and 1.6 times for exchangeable magnesium, respectively. Amounts of compost application significantly correlated with available phosphate (r=0.370, $p{\leq}0.01$), exchangeable potassium(r=0.429, $p{\leq}0.01$), exchangeable calcium(r=0.404, $p{\leq}0.01$), exchangeable magnesium(r=0.453, $p{\leq}0.01$), and exchangeable sodium(r=0.369, $p{\leq}0.01$), respectively. Our results suggest that soil nutrients management for sustainable agriculture was optimum fertilization based on soil testing for strawberry cultivation in greenhouse.

우리나라 농민들은 저투입 지속가능한 농업 보다 화학비료에 더욱 의존하고 있다. 딸기 시설 재배지에서 친환경 농업을 추진하기 위해서 토양 양분 불균형을 개선하도록 충남지역 56개소의 양분관리 조건과 토양 화학성과의 관계를 구명하였다. 퇴비 시용량은 40대가 40 Mg $ha^{-1}$로 표준시비량 보다 2배 높았고 50대는 밑비료 시용량으로 질소 105.2, 인산 58.3, 칼륨 68.1 Mg $ha^{-1}$로 표준시비량 보다 각각 질소는 3배, 인산과 칼륨은 1.2배 였다. 딸기 재배 경력은 10년 이하가 42.8%로 비율이 높았고 재배면적은 400 $m^2$ 이하인 농가가 75.0%의 높은 비율을 나타냈다. 돈분 퇴비를 시용하는 농가는 48.2%로 가장 높았으며 밑비료 질소 평균 시비량은 92.3 Mg $ha^{-1}$로 표준시비량의 2.6배 였다. 또한, 퇴비 시용량이 30 Mg $ha^{-1}$를 초과하는 경우 적정수준에 비해 토양 EC 값은 1.8배, 유효인산 함량은 3.0배, 치환성 칼륨 함량은 2.6배, 칼슘 함량은 1.7배, 마그네슘 함량은 1.6배 높았으며 토양의 유효인산 평균 함량은 986 mg $kg^{-1}$으로 적정수준 보다 2.2배 높았다. 주성분 분석결과 PC 1은 토양 유효인산 (0.342), 토양 치환성 칼슘 (0.327), 토양 EC (0.310), 토양 유기물 (0.289) 순으로 정의 기여를 보였으며 PC 1은 39.6%, PC 2는 17.3%, PC 3은 13.6%로서 전체 70.5%의 자료를 설명할 수 있었다. 퇴비 시용량이 증가할수록 토양의 유효인산 함량 (r=0.370, $p{\leq}0.01$), 치환성 칼륨 (r=0.429, $p{\leq}0.01$), 칼슘 (r=0.404, $p{\leq}0.01$), 마그네슘 (r=0.453, $p{\leq}0.01$) 및 나트륨 (r=0.369, $p{\leq}0.01$)과 고도의 유의성 있는 정의상관을 보여 퇴비 시용량을 적정수준으로 조절하는 것이 매우 중요할 것으로 판단되었다. 본 연구결과 딸기 시설 재배지는 연령, 재배경력, 재배면적, 축분 퇴비 종류, 퇴비 시용량에 따라 많은 차이가 있어 지속농업을 위한 근본적인 토양 양분 관리방안은 농가별 토양검정에 의한 최적 시비라고 제안한다.

Keywords

References

  1. Chang, K.W., J.H. Hong. J.J. Lee, K.P. Han, and N.C. Kim. 2008. Evaluation of compost maturity by physicochemical properties and germination index of livestock manure compost. Korean J. Soil Sci. Fert. 41:137-142.
  2. Cho, K.R., C.S. Kang, T.J. Won, and K.Y. Park. 2006. Effects of compressed expansion rice hull application and drip irrigation on the alleviation of salt accumulation in the plastic film house soil. Korean J. Soil Sci. Fert. 39:372-379.
  3. Chung, B.Y., K.S. Lee, M.K. Kim, Y.H. Choi, M.K. Kim, and J.Y. Cho. 2008. Salt accumulation and desalinization of rainfall interception culture soils of Rubus sp. in gochang-gun. Jeollabuk-do. Korean J. Soil Sci. Fert. 41:310-317.
  4. Hannan, J.J. 1998. Greenhouses: Advanced technology for protected horticulture, CRC Press LLC. Boca Roton. Florida.
  5. Kang, B.K., H.J. Kim., K.J. Lee, J.J. Kim, and S.D. Hong. 2001. Salt movement of soils by runoff in green house area. Korean J. Environ. Agric. Korean J. Soil Sci. Fert. 30:265-271.
  6. Kang, B.K., I.M. Jeong, J.J. Kim, S.D. Hong, and K.B. Min. 1997. Chemical characteristics of plastic film house soils in Chungbuk area.
  7. Kim, J.H., J.S. Lee, W.I. Kim, G.B. Jung, S.G. Yun, Y.T. Jung, and S.K. Kwun. 2002. Groundwater and soil environment of plastic film house fields around central part of Korea. Korean J. Environ. Agric. 21:109-116. https://doi.org/10.5338/KJEA.2002.21.2.109
  8. Lee, J.T., G.J. Lee, Y.S. Zhang, S.W. Hwang, S.J. Im, C.B. Kim, and Y.H. Mun. 2006. Status of fertilizer application and soil management for major vegetable crops in farmer's fields of alpine area. Korean J. Soil Sci. Fert. 39:357-365.
  9. Lee, S.E., and C.S. Lee. 1994. Nutrient balance and application efficiency of nitrogen and potassium in salt-accumulated greenhouse soil. Korean J. Soil Sci. Fert. 27:78-84.
  10. Lee, Y.H., M.S. Yang, and H.D. Yun. 1996. Effect of plant-growth-promoting-bacteria inoculation on the growth and yield of red pepper (Capsicum annuum L.) with different soil electrical conductivity level. Korean J. Soil Sci. Fert. 29:396-402.
  11. Lee, Y.H., W.S. Cho, J.G. Kim, H.S. Lee. S.R. Park, and H.D. Yun. 1997. Effect of plant-growth-promoting bacteria inoculation on the growth and yield of cucumber (Cucumis sativa L.). Korean J. Soil Sci. Fert. 30: 196-199.
  12. Nelson, P.V. 1991. Greenhouse operation and management (4th ed.). Prentice Hall. P. 257-315.
  13. NIAST (National Institute of Agricultural Science and Technology). 2000. Analytical methods of soil and plant. RDA, Suwon, Korea.
  14. NIAST (National Institute of Agricultural Science and Technology). 2005. Annual report of the monitoring project on agro-environmental quality in 2004. RDA, Suwon, Korea.
  15. NIAST (National Institute of Agricultural Science and Technology). 2006a . Annual report of the monitoring project on agro-environmental quality in 2005. RDA, Suwon, Korea.
  16. NIAST (National Institute of Agricultural Science and Technology). 2006b. Fertilizer recommendation for crops. RDA, Suwon, Korea.
  17. NIAST (National Institute of Agricultural Science and Technology). 2009. Annual report of the monitoring project on agro-environmental quality in 2008. RDA, Suwon, Korea.
  18. Ok, Y.S., J.E. Yang, K.Y. Yoo. Y.B. Kim, D.Y. Chung, and Y.H. Park. 2005. Screening of adsorbent to reduce salt concentration in the plastic film house soil under continuous vegetable cultivation. Korean J. Environ. Agric. 24:253-260. https://doi.org/10.5338/KJEA.2005.24.3.253
  19. Park, B.G., T.H. Jeon, Y.H. Kim, and Q.S. Ho. 1994. Status of farmers' application rates of chemical fertilizer and farm manure for major crops. Korean J. Soil Sci. Fert. 27:238-246.
  20. RDA (Rural development administration). 2009. Farming textbook of Strawberry. RDA, Suwon, Korea.
  21. SAS Institute. 2006. SAS 9.1.3 Version. SAS Iust., Cary. NC.
  22. Wagstaffe, A., and H.B. Battey. 2007. Tunnel production of strawberry in the UK: a review. In: Takeda, F., Handley. D.T., Poling, E.B. (Eds.), Proc. North Am. Straw. Symp., CAL, pp. 23-28.
  23. Yuk, CS., J.J. Kim, S.D. Hong, and B.G. Kang. 1993. Salt accumulation in horticultural soils of PE film house in Chungbuk area. Korean J. Soil Sci. Fert. 26:172-180.