Leaching of Chromium, Copper and Arsenic in Soils and Rapid Identification of CCA-Treated Woods Using Modified PAN Stain

CCA 목재방부제 설치지역 토양의 크롬.구리.비소 분포와 PAN 지시약을 이용한 CCA 방부목의 현장 검출방법 개발

  • Abdelhafez, Ahmed A. (College of Agriculture and Life Sciences, Kangwon National University) ;
  • Awad, Yasser M. (College of Agriculture and Life Sciences, Kangwon National University) ;
  • El-Azeem, Samy A.M. Abd (College of Agriculture and Life Sciences, Kangwon National University) ;
  • Kim, Min-Su (Natural Environment Research Office) ;
  • Ham, Kwang-Joon (Natural Environment Research Office) ;
  • Lim, Kyoung-Jae (College of Agriculture and Life Sciences, Kangwon National University) ;
  • Yang, Jae-E (College of Agriculture and Life Sciences, Kangwon National University) ;
  • Ok, Yong-Sik (College of Agriculture and Life Sciences, Kangwon National University)
  • ;
  • ;
  • ;
  • 김민수 (강원도 자연환경연구공원) ;
  • 함광준 (강원도 자연환경연구공원) ;
  • 임경재 (강원대학교 농업생명과학대학) ;
  • 양재의 (강원대학교 농업생명과학대학) ;
  • 옥용식 (강원대학교 농업생명과학대학)
  • Received : 2010.01.16
  • Accepted : 2010.01.22
  • Published : 2010.02.28

Abstract

Although several studies have reported that Cr, Cu and As can leach from CCA-treated woods, few studies have been conducted on this topic in Korea. Therefore, this study was conducted to monitor Cr, Cu and As leaching from CCA-treated wood products and to develop a rapid identification method for CCA-treated wood products by using indicators such as PAN stain. Soil samples were collected at depths of 0-70 cm and wood samples were collected by thickness of wood layer. The soil and wood samples were then digested and analyzed for Cr, Cu and As concentrations using an atomic absorption spectrometer. The As and Cu concentrations decreased sharply with depth from 34.38 and 33.65 mg $kg^{-1}$ at 0-1 cm to 1.72 and 7.84 mg $kg^{-1}$ at 70 cm, respectively. In general, As was more mobile than Cr and Cu in the soil. For wood samples, the Cr, Cu and As concentrations were higher in the outer layer (0-0.5cm) than the inner layers (0.6-4.5cm). Evaluation of rapid identification methods revealed that 100% acetone with 0.1% PAN indicator was the best combination for detection of CCA-treated wood in the field.

목재방부제는 목재의 수명 연장을 위해 오랜 기간 사용되어 왔으나 이중 상당수는 환경에 유해한 금속을 다량 함유하고 있다. 특히 전세계적으로 목재방부시장을 점유하고 있는 크롬 구리 비소계열의 목재방부제 CCA (Chromated Copper Arsenate)는 환경에 유해한 독성 금속류로 구성되어 인체에 대한 피해와 환경오염에 대한 우려가 지적되고 있다. 미국의 경우 플로리다 주를 비롯하여 CCA 오염지역에 대한 복원사업을 추진하였으며 주별 CCA 오염도를 조사한 바 있다. 그러나 국내의 경우 목재방부제의 사용으로 인한 토양오염에 대한 연구는 극히 미비한 실정이므로 CCA에 대한 환경적 측면에서의 평가가 절실하다. 본 연구는 국내에서 가장 널리 사용된 목재방부제인 CCA를 선정하여 목재방부제 설치지역 토양의 깊이별 크롬 구리 비소 농도를 측정하였으며 국내에 널리 산재된 CCA 방무목 설치지역을 현장에서 효율적으로 검출할 수 있는 간이 PAN 지시약을 개발하고자 수행하였다. 토양 시료는 0~70cm 깊이에서 채취하였고 방부목은 목재 깊이별로 구분하여 채취한 후 산분해하였고 AAS를 이용하여 각 원소의 전함량을 측정하였다. 토양 중 비소와 구리는 0~1 cm에서 각각 34.38 mg/kg, 33.65 mg/kg 였으나 70 cm에서는 1.72 mg/kg, 7.84 mg/kg로 토양 깊이에 따라 급격히 감소하였다. 원소별 이동성의 경우 비소가 타 원소(크롬, 구리)에 비해 상대적으로 이동성이 높은 것으로 평가되었다. 목재 시료의 경우 내부보다는 표면 (외부)의 농도가 높게 나타났으며 각 원소별로 1,000~5,000 mg/kg의 수준으로 검출되었다. 현장에서 CCA 방부목을 효율적으로 판단하기 위한 지시약의 조성을 개발하고자 다양한 종류 및 농도의 용매와 PAN의 농도를 조절하며 발색 시간과 정도를 측정한 결과 100% 아세톤을 용매로 0.1% 수준의 PAN을 조제하는 경우 가장 �裏� 시간에 발색하여 현장에서 방부목을 효율적으로 검출할 수 있을 것으로 평가되었다.

Keywords

References

  1. Abdelhafez, A.A., Y.M. Awad, M.S. Kim, K.J. Ham, K.J. Lim, J.H. Joo, J.E. Yang, and Y.S. Ok. 2009. Environmental monitoring of heavy metals and arsenic in soils adjacent to CCA-treated wood structure in Gangwon Province, South Korea. Korean J. Environ. Agric. 28:340-346. https://doi.org/10.5338/KJEA.2009.28.4.340
  2. Aceto, M., and A. Fedele. 1994. Rain water effect on the release of arsenic, copper and chromium from treated wood. Fresenius Environ. Bull. 3:389-394.
  3. Baba, K., T. Arao, Y. Maejima, E. Watanabe, H. Eun, and M. Ishizaka. 2008. Arsenic speciation in rice and soil containing related compounds of chemical warfare agents. Anal. Chem. 80:5768-5775. https://doi.org/10.1021/ac8002984
  4. Blassino, M., H. Solo-Gabriele, and T. Townsend. 2002.Pilot scale evaluation of sorting technologies for CCA treated wood waste. Waste Manage. Res. 20:290-301. https://doi.org/10.1177/0734242X0202000310
  5. Chirenje, T., L.Q. Ma, C. Clark, and M. Reeves. 2003. Cu, Cr, and As distribution in soil adjacent to pressure-treated decks, fences and poles. Environ. Pollut. 124:407-417. https://doi.org/10.1016/S0269-7491(03)00046-0
  6. Chirenje, T., L.Q. Ma, M. Chen, and E.J. Zillioux. 2003. Comparisonbetween background concentrations of arsenic in urban and non-urban areas of Florida. Adv. Environ. Res. 8:137-146. https://doi.org/10.1016/S1093-0191(02)00138-7
  7. Chuncheon Weather Station. 2009. http://chuncheon.kma.go.kr.index.php
  8. Clausen, C.A. 2004. Improving the two-step remediation process for CCA-treated wood: part II. Evaluating bacterial nutrient sources. Waste Manag. 24:407-411. https://doi.org/10.1016/j.wasman.2003.11.007
  9. Cooper, P.A. 1991. Leaching of CCA from treated wood: pH effects. For. Prod. J. 41:30-32.
  10. Cox, C. 1997. Chromated copper arsenate. J. of Pestic. Reform. 11:2-5.
  11. Dagan, R., G. Bitton, and T.G. Townsend. 2006. Metal transport and bioavailability in soil contaminated with CCA-treated wood. Soil and Sediment contam. 15:61-72. https://doi.org/10.1080/15320380500363111
  12. Dawson, B.S.W., G.F. Parker, F.J. Cowan, and S.O. Hong. 1991.Inter-laboratory determination of copper, chromium and arsenic in timber treated with wood preservative. Analyst 116:339-346. https://doi.org/10.1039/an9911600339
  13. European Commission. 2003. Commission Directive 2003/2/EC of 6 January 2003 relating to restrictions on the marketing and use of arsenic (tenth adaptation to technical progress to Council Directive 76/769/EEC). Official J. of the Eur. Commun. Brussels.
  14. Freeman, M.H., and C.R. Mclntyre. 2008. A comprehensive review of copper-based wood preservatives: with a focus on new micronized or dispersed copper system. For. Prod. J. 58:6-27.
  15. Gezer, E.D., U.C. Yildiz, A. Temiz, S. Yildiz, and E. Dizman. 2005. Cu, Cr, and As distribution in soil adjacent to CCA-treated utility poles in Eastern Blacksea region of Turkey. Build. Environ. 40:1684-1688. https://doi.org/10.1016/j.buildenv.2004.12.015
  16. Green III, F., and C.A. Clausen 2005. Copper tolerance of brown-rot fungi: oxalic acid production in southern pine treated with arsenic-free preservatives. Int. Biodeterior. Biodegradation. 56:75-79. https://doi.org/10.1016/j.ibiod.2005.04.003
  17. Hingston, J.A., C.D. Collins, R.J. Murphy, and J.N. Lester. 2001. Leaching of chromate copper arsenate wood preservatives: a review. Environ. Pollut. 111:53-66. https://doi.org/10.1016/S0269-7491(00)00030-0
  18. Ibach, R.E. 1999. Wood handbook-Wood as an engineering material. Gen. Tech. Rep. FPL-GTR-113 Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
  19. Jacobi, G., H. Solo-Gabriele, T. Townsend, and B. Dubey. 2007.Evaluation of methods for sorting CCA-treated wood. Waste Mange. 27:1617-1625. https://doi.org/10.1016/j.wasman.2006.09.014
  20. Jang, Y.C., T.G. Townsend, M. Ward, and G. Bitton 2002. Leaching of arsenic, chromium, and copper in a contaminated soil at a wood preserving site. Bull. Environ. Contam. Toxicol. 69:808-816. https://doi.org/10.1007/s00128-002-0132-4
  21. Kartal, S.N., and Y. Imamura. 2005. Removal of copper, chromium, and arsenic from CCA-treated wood onto chitin and chitosan. Bioresour. Technol. 96:389-392. https://doi.org/10.1016/j.biortech.2004.03.004
  22. Kartal, S.N., W.J. Hwang, and Y. Imamura. 2007. Evaluation of effect of leaching medium on the release of copper, chromium, and arsenic from treated wood. Build. Environ. 42:1188-1193. https://doi.org/10.1016/j.buildenv.2005.12.009
  23. Kim, H., B. Song, and J. Koo. 2008. Spatial distributions of chromium, copper, and arsenic concentrations in soils near three log structures and a sound barrier, all constructed with CCA-treated wood. J. Kor. Soc. Soil Groundwat. Environ. 13:12-20.
  24. Kim, H., D. Kim, J. Park, Y.S. Shin, I.Y. Hwang, and Y.K. Kim. 2006. Distribution of chromium, copper, and arsenic in soils adjacent to steps, a deck, and a sound barrier constructed with a wood preservatives CCA-treated tinbers. J. Kor. Soc. Soil Groundwat. Environ. 11:54-65.
  25. Kim, H., D.J. Kim, J.H. Koo, J.G. Park, and Y.C. Jang. 2007. Distribution and mobility of chromium, copper, and arsenic in soils collected near CCA-treated wood structure in Korea. Sci. Total Envion. 374:273-281. https://doi.org/10.1016/j.scitotenv.2006.12.047
  26. Lebow, S., and D. Foster. 2005. Environmental concentrations of copper, chromium, and arsenic released from a chromate-copper-arsenate-(CCA-C) treated wetland boardwalk. Forest Prod. J. 55:62-70.
  27. Lebow, S., D. Foster, and P. Lebow. 2004. Rate of CCA leaching from commercially treated decking. For. Prod. J. 54:81-88.
  28. Morrell, J.J., and J. Huffman. 2004. Copper, chromium, and arsenic levels in soils surrounding posts treated with chromate copper arsenate (CCA). Wood and Fiber Sci. 36:119-128.
  29. Nygren, O., C. Nilsson, and R. Lindahl. 1992. Occupational exposure to chromium, copper, and arsenic during work with impregnated wood in joinery shops. Ann. Occup. Hyg. 36:509-517. https://doi.org/10.1093/annhyg/36.5.509
  30. Rahman, F.A., D.L. Allan, C.J. Rosen, and M.J. Sadowsky. 2004. Arsenic availability from chromate copper arsenate (CCA)-treated wood. J. Environ. Qual. 33:173-180. https://doi.org/10.2134/jeq2004.0173
  31. Robinson, B., M. Greven, S. Green, S. Sivakumaran, P. Davidson, and B. Clothier. 2002. Leaching of copper, chromium and arsenic from treated vineyard posts in Marlborough, New Zealand. Sci. of the Total Environ. 364:113-123.
  32. Stilwell, D.E., and K.D. Gorny. 1997. Contamination of soil with copper, chromium, and arsenic under decks built from pressure treated wood. Bull. Environ. Contam. Toxicol. 58:22-29. https://doi.org/10.1007/s001289900295
  33. Stilwell, D.E., and T.J. Graetz. 2001. Copper, chromium, and arsenic levels in soils near highway traffic sound barrier built using CCA pressure-treated wood. Bull. Environ. Contam. Toxicol. 67:303-308. https://doi.org/10.1007/s001280125
  34. Temiz, A., U.C. Yildiz, and T. Nilsson. 2006. Comparison of copper emission rates from wood treated with different preservatives to the environment. Build Environ. 41:910-914. https://doi.org/10.1016/j.buildenv.2005.04.001
  35. Townsend, T., H. Solo-Gabriele, T. Tolaymat, K. Stook, and N. Hosein. 2003. Chromium, copper, and arsenic concentrations in soil underneath CCA-treated wood structure. Soil Sediment Contam. 12:779-798. https://doi.org/10.1080/714037715
  36. Warner, J.E., and K.R. Solomon. 1990. Acidity as a factor in the leaching of copper, chromium, and arsenic from CCA-treated wood dimension lumber. Environ. Toxicol. Chem. 9:1331-13337. https://doi.org/10.1897/1552-8618(1990)9[1331:AAAFIL]2.0.CO;2