식물생장촉진 세균 Methylobacterium spp. 와 IAA 처리가 고추와 토마토 유묘의 생육에 미치는 영향

Comparison of Plant Growth Promoting Methylobacterium spp. and Exogenous Indole-3-Acetic Acid Application on Red Pepper and Tomato Seedling Development

  • ;
  • ;
  • 임우종 (충북대학교 농업생명환경대학 농화학과) ;
  • 한광현 (충북대학교 농업생명환경대학 농화학과) ;
  • 사동민 (충북대학교 농업생명환경대학 농화학과)
  • Boruah, Hari P. Deka (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Chauhan, Puneet S. (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Yim, Woo-Jong (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Han, Gwang-Hyun (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • 투고 : 2010.02.03
  • 심사 : 2010.02.12
  • 발행 : 2010.02.28

초록

무균 및 온실조건에서 indole-3-acetic acid (IAA)의 처리와 1-aminocyclopropane-1-carboxylate deaminase (ACCD) 및 IAA 활성을 갖는 Methylobacterium 균주 접종 시 토마토와 고추의 생장을 비교 평가하였다. 무균조건에서 1.0 ${\mu}g\;mL^{-1}$의 IAA는 고추와 토마토의 뿌리생장을 촉진시키는데 비해 10.0 ${\mu}g\;mL^{-1}$ 이상의 높은 농도에서는 뿌리생장이 억제되었다. 그러나 높은 ACCD 활성을 갖고, IAA 활성은 낮거나 가지고 있지 않은 Methylobacterium 균주들을 접종하였을 때에는 고추와 토마토 모두 IAA 처리구 보다 뿌리생장이 증진되는 것을 확인하였다. 마찬가지로 온실조건에서 Methylobacterium 균주들을 접종했을 때, 마디길이와 잎의 크기 그리고 단위 면적당 잎의 무게 (SLW)에서 유의성 있는 증진효과를 보였다. 전반적인 식물 생장에서 저농도의 IAA 처리 효과는 Methylobacterium의 효과와 비슷한 경향을 나타냈다. 유묘의 지상부 길이는 ACCD 활성과 IAA 생산능을 갖는 Methylobacterium 균주 처리구에서 유의성 있는 증가를 확인할 수 있었으며, 전체 건물중 또한 Methylobacterium 처리 시 유의성 있는 증진 효과를 확인 할 수 있었다. 하지만 고농도의 IAA는 고추와 토마토의 생물량을 억제시켰다. 이러한 결과는 접종 균주의 IAA와 ACCD가 고추와 토마토 유묘의 생장 증진에 영향을 끼친다는 것을 증명한다.

A comparative study was performed in gnotobiotic and greenhouse conditions to evaluate the effect of exogenous application of indole-3-acetic acid (IAA) and inoculation of Methylobacterium spp. possessing 1-aminocyclopropane-1-carboxylate deaminase (ACCD) and IAA activity on red pepperand tomato seedling growth and development. Application of 1.0 ${\mu}g\;mL^{-1}$ IAA positively influenced root growth while high concentrations (>10.0 ${\mu}g\;mL^{-1}$) suppressed root growth of red pepper and tomato under gnotobiotic condition. On the other hand, inoculation of Methylobacterium strains with ACCD activity and IAA or without IAA enhanced root growth in both plants. Similarly, under greenhouse condition the inoculation of Methylobacterium sp. with ACCD activity and IAA enhanced plant fitness recorded as average nodal length and specific leaf weight (SLW) but the effect is comparable with the application of low concentrations of IAA. Seedling length was significantly increased by Methylobacterium strains while total biomass was enhanced by Methylobacterium spp. and exogenous applications of < 10.0 ${\mu}g\;mL^{-1}$ IAA. High concentrations of IAA retard biomass accumulation in red pepper and tomato. These results confirm that bacterial strains with plant growth promoting characters such as IAA and ACCD have characteristic effects on different aspects of growth of red pepper and tomato seedlings which is comparable or better than exogenous applications of synthetic IAA.

키워드

참고문헌

  1. Abanda-Nkpwatt, D., M. Musch, J. Tschiersch, M. Boettner, and W. Schwab. 2006. Molecular interaction between Methylobacterium extroquens and seedlings: growth promotion, methanol consumption and localization of methanol emission site. J. Expt. Botany. 15:4025-4032.
  2. Bent, E., and C.P. Chanway. 1998. The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Can. J. of Microbiol. 44: 980–988.
  3. Cakmakci, R., M. Erat, U. Erdogan, and M.F. Donmez. 2007. The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J. of Plant Nut. and Soil Sci.-Zeit. Fur Pflanzen. und Bodenkunde 170: 288–295.
  4. Chanprame, S., J.J. Todd, and J.M. Widholm. 1996. Prevention of pink-pigmented Methylotrophic bacteria (Methylobacterium mesophilicum) contamination of plant tissue cultures. Plant Cell Rep. 16: 222–225.
  5. Chanway, C.P. 1997. Inoculation of tree roots with plant growth promoting soil bacteria: An emerging technology for reforestation. Forest Sci. 43: 99–112.
  6. Costa, J.M., and J.E. Loper. 1994. Characterization of siderophore production by the biological control agent Enterobacter cloacae. Mol. Plant-Microbe Inter. 7: 440–448.
  7. Glick, B.R. 1995. The enhancement of plant-growth by freeliving bacteria. Can. J. Microbiol. 41: 109–117.
  8. Glick, B.R., and J.J. Pasternak. 2003. Molecular Biology Principles and application of Recombinant DNA. ASM Press. 3rd ed.
  9. Glick, B.R., D.M. Penrose, and J.P. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theo. Biol. 190: 63–68.
  10. Glick, B.R., B. Todorovic, J. Czarny, Z.Y. Cheng, and J. Duan. 2007. Promotion of plant growth by bacterial ACC deaminase. Crit. Rev. in Plant Sci. 26: 227–242.
  11. Holland, M.A., and J.C. Polacco. 1992. Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in soybean mutants. Plant Physiol. 98:942–948.
  12. Ivanova, E.G., N.V. Doronina, A.O. Shepelyakovskaya, A.G. Laman, F.A. Brovko, and Y.A. Trotsenko. 2000. Facultative and obligate aerobic methyl obacteria synthesize cytokinins. Microbiol. 69:646–651.
  13. Kim, K.A., W.J. Yim, P. Trivedi, M. Madhaiyan, H.P. Deka Boruah, M.R. Islam, G. Lee, and T.M. Sa. 2009. Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annum L.). Plant Soil, DOI 10.1007/s11104-009-0072-4.
  14. Koenig R.L., R.O. Morris, and J.C. Polacco. 2002. tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J. of Bacteriol. 184:1832–1842.
  15. Long, H.H., D.D. Schmidt, and I.T. Baldwin. 2008. Native bacterial endophytes promote host growth in a speciesspecific manner; phytohormone manipulations do not result in common growth responses. PL0S One, 3(7)2702. https://doi.org/10.1371/journal.pone.0002702
  16. Madhaiyan, M., S. Poonguzhali, and T.M. Sa. 2007. Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing Methylobacterium oryzae and interactions with auxins and ACC regulation of ethylene in canola (Brassica campestris). Planta. 226:867-876. https://doi.org/10.1007/s00425-007-0532-0
  17. Madhaiyan, M., S. Poonguzhali, J.H. Ryu, and T.M. Sa, 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224, 268–278.
  18. Omer, Z.S., R. Tombolini, A. Broberg, and B. Gerhardson. 2004b. Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul. 43:93–96.
  19. Poonguzhali, S., M. Madhaiyan,W.J. Yim, K.A. Kim, and T.M. Sa. 2008. Colonization pattern of plant root and leaf surfaces visualized by use of green-fluorescent-marked strain of Methylobacterium suomiense and its persistence in rhizosphere. App. Microbial and Cell Physiol. 78:1033-1043.
  20. Raaijmakers, J.M., C.T. Paulitz, C. Steinberg, C. Alabouvette, and Y. Moenne-Loccoz. 2009. The rhizosphere: a playground and battlefield for soil borne pathogens and beneficial microorganisms. Plant Soil DOI: 10.1007/s11104-008-9568-6.
  21. Ryu, J.H., M. Madhaiyan, S. Poonguzhali, W.J. Yim, P. Indiragandhi, K.A. Kim, R. Anandham, J.C. Yun, and T.M. Sa. 2006. Plant growth substances produced by Methylobacterium spp. and their effect on the growth of tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.). J. Microbiol. Biotechnol., 16: 1622-1628.
  22. Shepelyakovskaya, A.O., N.V. Doronina, A.G. Laman, F.A. Brovko, and Y.A. Trotsenko. 1999. New Data about the ability of aerobic Methylotrophic bacteria to synthesize cytokinins. Dokl. Akad. Nauk, 368:555–557.
  23. Spaepen, S., J. Vanderleyden, and R. Remans. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews 31: 425–448.
  24. Strobel, G., B. Daisy, U. Castillo, and J. Harper. 2004. Natural products from endophytic microorganisms. J. of Nat. Products 67: 257–268.
  25. Van Loon, L.C., P. Bakker, and C.M.J. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathol. 36: 453–483.
  26. Wakelin, S.A., R.A. Warren, P.R. Harvey, and M.H. Ryder. 2004. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol. and Fertil. of Soils 40: 36–43.
  27. Woodward, A.W., and B. Bartel. 2005. Auxin: Regulation, action and interaction. Ann. of Bot. 95: 707–735.