DOI QR코드

DOI QR Code

Comparative Study of Anti-oxidant and Anti-inflammatory Activities between Curcumae longae Radix and Curcumae longae Rhizoma

울금과 강황의 항산화 및 항염증 활성 비교연구

  • Oh, Hye-In (Dept. of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Park, Han-Byeol (Dept. of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Ju, Mi-Sun (Dept. of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Jung, Sun-Yong (Dept. of Neuropsychiatry, College of Oriental Medicine, Kyung Hee University) ;
  • Oh, Myung-Sook (Dept. of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University)
  • 오혜인 (경희대학교 약학대학 나노의약생명과학과) ;
  • 박한별 (경희대학교 약학대학 나노의약생명과학과) ;
  • 주미선 (경희대학교 약학대학 한약학과) ;
  • 정선용 (경희대학교 한의과대학 신경정신과학교실) ;
  • 오명숙 (경희대학교 약학대학 나노의약생명과학과)
  • Received : 2010.02.25
  • Accepted : 2010.03.22
  • Published : 2010.03.30

Abstract

Objectives : In this study, we compared the anti-oxidant and anti-inflammatory activities of Curcumae longae Radix (CLRa) and Curcumae longae Rhizoma (CLRh). Methods : We performed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) cation scavenging assays, and determined total polyphenolic content to examine the anti-oxidant effects of CLRa and CLRh. We also evaluated the anti-oxidant effects of CLRa and CLRh against hydrogen peroxide ($H_2O_2$)-induced toxicity in PC12 cells using thiazolyl blue tetrazolium bromide (MTT) and reactive oxygen species (ROS) assays. Next, to compare the anti-inflammatory effects of CLRa and CLRh against lipopolysaccharide (LPS)-induced inflammation in microglia BV2 cells, we measured nitric oxide (NO) assay and inducible nitrite synthase (iNOS) using Western blotting analysis. Results : CLRa showed higher activity in DPPH and ABTS assays and lower total polyphenolic contents compared with CLRh. In PC12 cells, CLRa and CLRh showed no difference in H2O2-induced cell toxicity and ROS overproduction. In BV2 cells, CLRa showed higher effect than CLRh in NO and iNOS production induced by LPS. Conclusions : These results demonstrate that CLRa has higher radical scavenging activities and anti-inflammatory effect in BV2 cells comparing CLRh. However, CLRa and CLRh have no effect and no difference in $H_2O_2$-induced toxicity.

Keywords

References

  1. 식품의약품안전청. 대한약전. 신일북스. 2008 : 905-6, 960.
  2. 식품의약품안전청. 한약재 관능검사지침 I. 이문기업. 2006 : 20, 76.
  3. 생약학교재편찬위원회. 생약학. 동명사. 2008 : 169-71.
  4. 김호철. 한약약리학. 집문당. 2001 : 327.
  5. 서부일, 최호영. 임상 한방 본초학. 영림사. 2004 : 585-9.
  6. 김창렬. 랫트의 간손상에 대한 울금 추출물의 간 기능 개선 효과. 한국축산식품학회지. 2006 ; 26(3) : 386-93.
  7. 강재구, 강효진, 서지혜, 김선옥, 최정효, 조도연, 박창교, 이회영. 낫토균으로 발효한 발효울금의 투여가 마우스의 간 기능 및 혈중 지질 함량에 미치는 영향. 한국식품과학회지. 2009 ; 38(4) : 430-35. https://doi.org/10.3746/jkfn.2009.38.4.430
  8. 안봉전, 이진영, 박태순, 편정란, 배호정, 송미애, 백은지, 박정미, 손준호, 이창언, 최경임. 추출조건에 따른 울금의 항산화 및 미백효과. 한국약용작물학회지. 2006 ; 14(3) : 168-72.
  9. Selvam R, Subramanian L, Gayathri R, Angayarkanni N. The anti-oxidant activity of turmeric (Curcuma longa). Journal of Ethnopharmacology. 1995 ; 47 : 59-67. https://doi.org/10.1016/0378-8741(95)01250-H
  10. 이재열, 김용래, 황문제, 구병수, 김근우. 울금의 항우울 효과에 대한 실험적 연구. 동의신경정신과학회지. 2007 ; 18(2) : 45-55.
  11. 윤주호, 류봉하, 김진성, 윤상협. 강황이 수종의 암세포에 미치는 영향. 대한한방내과학회지. 2006 ; 27(2) : 429-43.
  12. 이상헌, 안영민, 안세영, 김영옥, 이병철. 강황이 고환절제수술 및 testosterone으로 유발된 rat의 전립선 비대증에 미치는 영향. 대한한방내과학회지. 2008 ; 30(2) : 355-64.
  13. 박세근. 신경아세포에서 과산화수소의 세포사멸에 대한 강황의 보호작용. 세명대학교. 2007.
  14. Quiles JL, Mesa MD, Ramirez-Tortosa CL, Aguilera CM, Battino M, Gil A, Ramírez-Tortosa MC. Curcuma longa extract supplementation reduces oxidative stress and attenuates aortic fatty streak development in rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology. 2002 ; 22 : 1225-31. https://doi.org/10.1161/01.ATV.0000020676.11586.F2
  15. Miquel J, Bernd A, Sempere JM, Diaz-Alperi J, Ramirez A. The curcuma antioxidants: pharmacological effects and prospects for future clinical use. A review Archives of Gerontology and Geriatrics. 2002 ; 34 : 37-46. https://doi.org/10.1016/S0167-4943(01)00194-7
  16. Camacho-Barquero L, Villegas I, Sánchez-Calvo JM, Talero E, Sánchez-Fidalgo S, Motilva V, Lastra CA. Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis. International Immunopharmacology. 2007 ; 7 : 333-42. https://doi.org/10.1016/j.intimp.2006.11.006
  17. Jung KK, Lee HS, Cho JY, Shin WC, Rhee MH, Kim TG, Kang JH, Kim SH, Hong S, Kang SY. Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life Science. 2006 ; 79 : 2022-31.
  18. Arauj CAC, Leon LL. Biological activities of Curcuma longa L. Memorias do Instituto Oswaldo Cruz. 2001 ; 96(5) : 723-8. https://doi.org/10.1590/S0074-02762001000500026
  19. Blosis MS. Antioxidant determination by the use of a stable free radical. Nature. 1958 ; 181 : 1190-200. https://doi.org/10.1038/1811190a0
  20. George P, Dimltrios B. Antioxidant Effect of Natural Phenols on Olive Oil. Journal of the American Oil Chemists' Society. 1991 ; 68 : 669-71. https://doi.org/10.1007/BF02662292
  21. Madamanchi NR, Vendrov A, Runge MS. Oxidative Stress and Vascular Disease. Arterioscler Thrombosis, and Vascular Biology. 2005 ; 25 ; 29-38.
  22. MacNee W. Oxidative stress and lung inflammation in airways disease. European Journal of Pharmacology. 2001 ; 429 : 195-207. https://doi.org/10.1016/S0014-2999(01)01320-6
  23. Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE. Neuroinflammation, oxidative stress and the pathogenesis of Parkinson's Disease. Clinical Neuroscience Research. 2006 ; 6 : 261-81. https://doi.org/10.1016/j.cnr.2006.09.006
  24. Sayre ML, Perry G, Smith AM. Oxidative stress and neurotoxicity. Chemical Research in Toxicology 2008 ; 21 : 172-88. https://doi.org/10.1021/tx700210j
  25. Nathan C. Points of control in inflammation. Nature. 2002 ; 420(6917) : 846-52. https://doi.org/10.1038/nature01320
  26. Vilhardt F. Microglia: phagocyte and glia cell. The International Journal of Biochemistry & Cell Biology. 2005 ; 37 : 17-21. https://doi.org/10.1016/j.biocel.2004.06.010
  27. Sanchez-Moreno C. Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Science and Technology International. 2002 ; 8 : 121-37. https://doi.org/10.1177/1082013202008003770
  28. Arnao MB, Cano A, Acosta M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry. 2001 ; 73 : 239-44. https://doi.org/10.1016/S0308-8146(00)00324-1
  29. Cowan KJ, Storey KB. Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. Journal of Experimental Biology. 2003 ; 206 : 1107-15. https://doi.org/10.1242/jeb.00220
  30. 한방약리학교재편찬위원회. 한방약리학. 신일북스. 2009 ; 107-8.
  31. Ishibashi Y, Takahashi N, Tokumaru A, Karino K, Sugamori T, Sakane T, kodani N, Kunizawa Y, Yoshitomi H, Sato H, Oyake N, Murakami Y, Shimada T. Activation of inducible NOS in peripheral vessels and outcomes in heart failure patients. Journal of Cardiac Failure. 2008 ; 14(9) : 724-31. https://doi.org/10.1016/j.cardfail.2008.06.450
  32. Ishibashi Y, Shimada T, Murakami Y, Takahashi N, Sakane T, Sugamori T, Ohata S, Hashimoto M. An inhibitor of inducible nitric oxide synthase decreases forearm blood flow in patients with congestive heart failure. Journal of the American College of Cardiology. 2001 ; 38(5) : 1470-6. https://doi.org/10.1016/S0735-1097(01)01582-0