DOI QR코드

DOI QR Code

Mechanism of Anti-Invasive Action of Docosahexaenoic Acid in SW480 Human Colon Cancer Cell

인체 대장암 세포주 SW480에서 docosahexaenoic acid에 의한 침윤억제 기전

  • Shin, So-Yeon (Department of Biochemisty, School of Medicine, Chungnam National University) ;
  • Kim, Yong-Jo (Department of Biochemisty, School of Medicine, Chungnam National University) ;
  • Song, Kyoung-Sub (Department of Biochemisty, School of Medicine, Chungnam National University) ;
  • Jing, Kaipeng (Department of Biochemisty, School of Medicine, Chungnam National University) ;
  • Kim, Na-Yeong (Department of Biochemisty, School of Medicine, Chungnam National University) ;
  • Jeong, So-Yeon (Department of Biochemisty, School of Medicine, Chungnam National University) ;
  • Park, Ji-Hoon (Department of Biochemisty, School of Medicine, Chungnam National University) ;
  • Seo, Kang-Sik (Department of Biochemisty, School of Medicine, Chungnam National University) ;
  • Heo, Jun-Young (Department of Biochemisty, School of Medicine, Chungnam National University) ;
  • Kwon, Hyun-Joo (Department of Biochemisty, School of Medicine, Chungnam National University) ;
  • Park, Jong-Il (Department of Biochemisty, School of Medicine, Chungnam National University) ;
  • Park, Seung-Kiel (Department of Biochemisty, School of Medicine, Chungnam National University) ;
  • Kweon, Gi-Ryang (Department of Biochemisty, School of Medicine, Chungnam National University) ;
  • Yoon, Wan-Hee (Department of Biochemisty, School of Medicine, Chungnam National University) ;
  • Hwang, Byung-Doo (Department of Biochemisty, School of Medicine, Chungnam National University) ;
  • Lim, Kyu (Department of Biochemisty, School of Medicine, Chungnam National University)
  • 신소연 (충남대학교 의학전문대학원 생화학교실) ;
  • 김용조 (충남대학교 의학전문대학원 생화학교실) ;
  • 송경섭 (충남대학교 의학전문대학원 생화학교실) ;
  • ;
  • 김나영 (충남대학교 의학전문대학원 생화학교실) ;
  • 정소연 (충남대학교 의학전문대학원 생화학교실) ;
  • 박지훈 (충남대학교 의학전문대학원 생화학교실) ;
  • 서강식 (충남대학교 의학전문대학원 생화학교실) ;
  • 허준영 (충남대학교 의학전문대학원 생화학교실) ;
  • 권현주 (충남대학교 의학전문대학원 생화학교실) ;
  • 박종일 (충남대학교 의학전문대학원 생화학교실) ;
  • 박승길 (충남대학교 의학전문대학원 생화학교실) ;
  • 권기량 (충남대학교 의학전문대학원 생화학교실) ;
  • 윤완희 (충남대학교 의학전문대학원 생화학교실) ;
  • 황병두 (충남대학교 의학전문대학원 생화학교실) ;
  • 임규 (충남대학교 의학전문대학원 생화학교실)
  • Received : 2010.01.25
  • Accepted : 2010.02.20
  • Published : 2010.04.30

Abstract

Colon cancer is one of the most common malignancies in the western world and the second leading cause of cancer death in Korea. Epidemiology studies have shown a reduced incidence of colon cancer among populations consuming a large quantity of ${\omega}3$-polyunsaturated fatty acids (${\omega}3$-PUFA) of marine origin. Recently, it has been found that ${\omega}3$-PUFA has an antineoplastic effect in several cancers. This study was designed to investigate the mechanism of the anti-invasive effect of ${\omega}3$-PUFA in colon cancer. ${\omega}3$-PUFA, docosahexaenoic acids (DHA) and eicosapentaenoic acid (EPA) treatment resulted in a dose-dependent inhibition of cell growth in SW480 human colon cancer cells. In contrast, arachidonic acid (AA), a ${\omega}6$-PUFA, exhibited no significant effect. This action likely involves apoptosis, given that DHA treatment increased apoptotic cells in TUNEL assay. Moreover, invasiveness of SW480 cells was inhibited following treatment of DHA in a dose-dependent manner; in contrast, AA had no effect. The levels of MMP-9 and MMP-2 mRNA decreased after DHA pretreatment. MMP-9 and MMP-2 promoter activities were also inhibited by DHA treatment. The levels of NF-kB and p-IkB protein were down-regulated by DHA pretreatment in a dose dependent manner. In addition, DHA inhibited NF-kB promoter reporter activities. These findings suggest that ${\omega}3$-PUFA may inhibit cancer cell invasion by inhibition of MMPs via reduction of NF-kB in colon cancer. In conclusion, ${\omega}3$-PUFA could be used for chemoprevention and treatment of human colon cancer.

대장암은 미국 등 서양 국가뿐만 아니라 국내에서도 2번째로 많이 발병이 되는 암으로 알려져 있다. 역학조사에 의하면 ${\omega}3$-PUFAs를 많이 섭취한 인종에서 대장암 발생빈도가 감소하고 최근 ${\omega}3$-PUFAs는 수종의 암에 대해 항암작용을 나타낸다고 한다. 이에 본 연구에서는 대장암에서 DHA 등 ${\omega}3$-PUFA의 항침윤 기전을 규명하여 다음과 같은 결과를 얻었다. DHA및 EPA는 대장암 세포주 SW480의 증식을 농도 의존적으로 억제하였으나 AA는 거의 영향이 없었으며 TUNEL assay로 apoptotic cell death가 확인 되었다. DHA는 $\beta$-catenin 단백 및 TCF/LEF luciferase 활성을 농도 의존적으로 억제 하였다. SW480 세포의 침윤능은 DHA의 농도에 의존적으로 억제되었다. DHA처리 후 MMP-9 및 MMP-2 mRNA양이 감소되었을 뿐만 아니라 그 promoter의 reporter 활성도 억제되었다. NF-kB 및 p-IkB 단백질양도 DHA의 처리농도에 의존적으로 감소하였으며 NF-kB promoter의 활성도 억제되었다. 이상의 결과로 ${\omega}3$-PUFA는 대장암에서 NF-kB 신호전달 차단에 의한 MMP-2 및 MMP-9 발현을 억제하여 침윤을 억제하여 항암작용을 나타낼 수 있음을 시사하며, 따라서 ${\omega}3$-PUFA는 대장암의 예방 및 치료에 유용하게 사용될 수 있으리라 생각된다.

Keywords

References

  1. Aberle, H., A. Bauer, J. Stappert, A. Kispert, and R. Kemler. 1997. beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO. J. 16, 3797-3804. https://doi.org/10.1093/emboj/16.13.3797
  2. Abou-el-Ela, S. H., K. W. Prasse, R. L. Farrell, R. W. Carroll, A. E. Wade, and O. R. Bunce. 1989. Effects of D,L-2-difluoromethylornithine and indomethacin on mammary tumor promotion in rats fed high n-3 and/or n-6 fat diets. Cancer Res. 49, 1434-1440.
  3. Berquin, I. M., Y. Min, R. Wu, J. Wu, D. Perry, J. M. Cline, M. J. Thomas, T. Thornburg, G. Kulik, A. Smith, I. J. Edwards, R. D'Agostino, H. Zhang, H. Wu, J. X. Kang, and Y. Q. Chen. 2007. Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. J. Clin. Invest. 117, 1866-1875. https://doi.org/10.1172/JCI31494
  4. Bhattacharya, A., D. Sun, M. Rahman, and G. Fernandes. 2007. Different ratios of eicosapentaenoic and docosahexaenoic omega-3 fatty acids in commercial fish oils differentially alter pro-inflammatory cytokines in peritoneal macrophages from C57BL/6 female mice. J. Nutr. Biochem. 18, 23-30. https://doi.org/10.1016/j.jnutbio.2006.02.005
  5. Bond, M., A. J. Chase, A. H. Baker, and A. C. Newby. 2001. Inhibition of transcription factor NF-kappaB reduces matrix metalloproteinase-1, -3 and -9 production by vascular smooth muscle cells. Cardiovasc Res. 50, 556-565. https://doi.org/10.1016/S0008-6363(01)00220-6
  6. Boudreau, M. D., K. H. Sohn, S. H. Rhee, S. W. Lee, J. D. Hunt, and D. H. Hwang. 2001. Suppression of tumor cell growth both in nude mice and in culture by n-3 polyunsaturated fatty acids: mediation through cyclooxygenase-independent pathways. Cancer Res. 61, 1386-1391.
  7. Bours, V., M. Bentires-Alj, A. C. Hellin, P. Viatour, P. Robe, S. Delhalle, V. Benoit, and M. P. Merville. 2000. Nuclear factor-kappa B, cancer, and apoptosis. Biochem. Pharmacol. 60, 1085-1089. https://doi.org/10.1016/S0006-2952(00)00391-9
  8. Boyle, P. and J. Ferlay. 2005. Cancer incidence and mortality in Europe, 2004. Ann. Oncol. 16, 481-488. https://doi.org/10.1093/annonc/mdi098
  9. Bresalier, R. S., C. R. Bol, and, and Y. S. Kim. 1984. Characteristics of colorectal carcinoma cells with high metastatic potential. Gastroenterology 87, 115-122.
  10. Brown, M. D., C. A. Hart, E. Gazi, S. Bagley, and N. W. Clarke. 2006. Promotion of prostatic metastatic migration towards human bone marrow stoma by Omega 6 and its inhibition by Omega 3 PUFAs. Br. J. Cancer 94, 842-853. https://doi.org/10.1038/sj.bjc.6603030
  11. Byers, T. 1996. Nutrition and cancer among American Indians and Alaska Natives. Cancer 78, 1612-1616. https://doi.org/10.1002/(SICI)1097-0142(19961001)78:7+<1612::AID-CNCR17>3.3.CO;2-G
  12. Cadigan, K. M. and R. Nusse. 1997. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286-3305. https://doi.org/10.1101/gad.11.24.3286
  13. Calder, P. C., P. Yaqoob, F. Thies, F. A. Wallace, and E. A. Miles. 2002. Fatty acids and lymphocyte functions. Br J Nutr. 87 Suppl 1, S31-S48. https://doi.org/10.1079/BJN2001455
  14. Calviello, G., F. Di Nicuolo, S. Gragnoli, E. Piccioni, S. Serini, N. Maggiano, G. Tringali, P. Navarra, F. O. Ranelletti, and P. Palozza. 2004. n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis 25, 2303-2310. https://doi.org/10.1093/carcin/bgh265
  15. Calviello, G., F. Di Nicuolo, S. Serini, E. Piccioni, A. Boninsegna, N. Maggiano, F. O. Ranelletti, and P. Palozza. 2005. Docosahexaenoic acid enhances the susceptibility of human colorectal cancer cells to 5-fluorouracil. Cancer Chemother. Pharmacol. 55, 12-20. https://doi.org/10.1007/s00280-004-0846-6
  16. Calviello, G., F. Resci, S. Serini, E. Piccioni, A. Toesca, A. Boninsegna, G. Monego, F. O. Ranelletti, and P. Palozza. 2007. Docosahexaenoic acid induces proteasome-dependent degradation of beta-catenin, down-regulation of survivin and apoptosis in human colorectal cancer cells not expressing COX-2. Carcinogenesis 28, 1202-1209. https://doi.org/10.1093/carcin/bgl254
  17. Calviello, G., S. Serini, and E. Piccioni. 2007. n-3 polyunsaturated fatty acids and the prevention of colorectal cancer: molecular mechanisms involved. Curr. Med. Chem. 14, 3059-3069. https://doi.org/10.2174/092986707782793934
  18. Cannizzo, F., Jr. and S. A. Broitman. 1989. Postpromotional effects of dietary marine or safflower oils on large bowel or pulmonary implants of CT-26 in mice. Cancer Res. 49, 4289-4294.
  19. Clevers, H. 2006. Wnt/beta-catenin signaling in development and disease. Cell 127, 469-480. https://doi.org/10.1016/j.cell.2006.10.018
  20. Collett, E. D., L. A. Davidson, Y. Y. Fan, J. R. Lupton, and R. S. Chapkin. 2001. n-6 and n-3 polyunsaturated fatty acids differentially modulate oncogenic Ras activation in colonocytes. Am. J. Physiol. Cell Physiol. 280, C1066-C1075.
  21. Connolly, J. M., M. Coleman, and D. P. Rose. 1997. Effects of dietary fatty acids on DU145 human prostate cancer cell growth in athymic nude mice. Nutr. Cancer. 29, 114-119. https://doi.org/10.1080/01635589709514611
  22. Connolly, J. M., E. M. Gilhooly, and D. P. Rose. 1999. Effects of reduced dietary linoleic acid intake, alone or combined with an algal source of docosahexaenoic acid, on MDA-MB-231 breast cancer cell growth and apoptosis in nude mice. Nutr. Cancer. 35, 44-49. https://doi.org/10.1207/S1532791444-49
  23. Danbara, N., T. Yuri, M. Tsujita-Kyutoku, M. Sato, H. Senzaki, H. Takada, T. Hada, T. Miyazawa, K. Okazaki, and A. Tsubura. 2004. Conjugated docosahexaenoic acid is a potent inducer of cell cycle arrest and apoptosis and inhibits growth of colo 201 human colon cancer cells. Nutr. Cancer 50, 71-79. https://doi.org/10.1207/s15327914nc5001_10
  24. Eberhardt, W., A. Huwiler, K. F. Beck, S. Walpen, and J. Pfeilschifter. 2000. Amplification of IL-1 beta-induced matrix metalloproteinase-9 expression by superoxide in rat glomerular mesangial cells is mediated by increased activities of NF-kappa B and activating protein-1 and involves activation of the mitogen-activated protein kinase pathways. J. Immunol. 165, 5788-5797. https://doi.org/10.4049/jimmunol.165.10.5788
  25. Eeckhout, Y. and G. Vaes. 1977. Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin B, plasmin and kallikrein, and spontaneous activation. Biochem. J. 166, 21-31.
  26. Gago-Dominguez, M., J. M. Yuan, C. L. Sun, H. P. Lee, and M. C. Yu. 2003. Opposing effects of dietary n-3 and n-6 fatty acids on mammary carcinogenesis: The Singapore Chinese Health Study. Br. J. Cancer 89, 1686-1692. https://doi.org/10.1038/sj.bjc.6601340
  27. Gatta, G., L. Ciccolallo, R. Capocaccia, M. P. Coleman, T. Hakulinen, H. Moller, and F. Berrino. 2003. Differences in colorectal cancer survival between European and US populations: the importance of sub-site and morphology. Eur. J. Cancer 39, 2214-2222. https://doi.org/10.1016/S0959-8049(03)00549-5
  28. Gordon, M. D. and R. Nusse. 2006. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281, 22429-22433. https://doi.org/10.1074/jbc.R600015200
  29. Hardman, W. E. 2004. (n-3) fatty acids and cancer therapy. J. Nutr. 134, 3427S-3430S.
  30. Hardman, W. E., C. J. Barnes, C. W. Knight, and I. L. Cameron. 1997. Effects of iron supplementation and ET-18-OCH3 on MDA-MB 231 breast carcinomas in nude mice consuming a fish oil diet. Br. J. Cancer 76, 347-354. https://doi.org/10.1038/bjc.1997.389
  31. Hardman, W. E., M. P. Moyer, and I. L. Cameron. 1999. Fish oil supplementation enhanced CPT-11 (irinotecan) efficacy against MCF7 breast carcinoma xenografts and ameliorated intestinal side-effects. Br. J. Cancer 81, 440-448. https://doi.org/10.1038/sj.bjc.6690713
  32. Hardman, W. E., M. P. Moyer, and I. L. Cameron. 2000. Dietary fish oil sensitizes A549 lung xenografts to doxorubicin chemotherapy. Cancer Lett. 151, 145-151. https://doi.org/10.1016/S0304-3835(99)00396-1
  33. Hoppler, S. and C. L. Kavanagh. 2007. Wnt signalling: variety at the core. J. Cell Sci. 120, 385-393. https://doi.org/10.1242/jcs.03363
  34. Iigo, M., T. Nakagawa, C. Ishikawa, Y. Iwahori, M. Asamoto, K. Yazawa, E. Araki, and H. Tsuda. 1997. Inhibitory effects of docosahexaenoic acid on colon carcinoma 26 metastasis to the lung. Br. J. Cancer 75, 650-655. https://doi.org/10.1038/bjc.1997.116
  35. Jemal, A., T. Murray, A. Samuels, A. Ghafoor, E. Ward, and M. J. Thun. 2003. Cancer statistics, 2003. CA. Cancer J. Clin. 53, 5-26. https://doi.org/10.3322/canjclin.53.1.5
  36. Kim, J. S., Y. C. Lee, H. T. Nam, G. Li, E. J. Yun, K. S. Song, K. S. Seo, J. H. Park, J. W. Ahn, O. Zee, J. I. Park, W. H. Yoon, K. Lim, and B. D. Hwang. 2007. Apicularen A induces cell death through Fas ligand up-regulation and microtubule disruption by tubulin down-regulation in HM7 human colon cancer cells. Clin. Cancer Res. 13, 6509-6517. https://doi.org/10.1158/1078-0432.CCR-07-1428
  37. Kimura, Y. 2002. Carp oil or oleic acid, but not linoleic acid or linolenic acid, inhibits tumor growth and metastasis in Lewis lung carcinoma-bearing mice. J. Nutr. 132, 2069-2075.
  38. Kinzler, K. W. and B. Vogelstein. 1996. Lessons from hereditary colorectal cancer. Cell 87, 159-170. https://doi.org/10.1016/S0092-8674(00)81333-1
  39. Kobayashi, N., R. J. Barnard, S. M. Henning, D. Elashoff, S. T. Reddy, P. Cohen, P. Leung, J. Hong-Gonzalez, S. J. Freedland, J. Said, D. Gui, N. P. Seeram, L. M. Popoviciu, D. Bagga, D. Heber, J. A. Glaspy, and W. J. Aronson. 2006. Effect of altering dietary omega-6/omega-3 fatty acid ratios on prostate cancer membrane composition, cyclooxygenase-2, and prostaglandin E2. Clin. Cancer Res. 12, 4662-4670. https://doi.org/10.1158/1078-0432.CCR-06-0459
  40. Konstantinopoulos, P. A., G. P. Vandoros, M. V. Karamouzis, M. Gkermpesi, G. Sotiropoulou-Bonikou, and A. G. Papavassiliou. 2007. EGF-R is expressed and AP-1 and NF-kappaB are activated in stromal myofibroblasts surrounding colon adenocarcinomas paralleling expression of COX-2 and VEGF. Cell Oncol. 29, 477-482.
  41. Kromhout, D. 1990. The importance of N-6 and N-3 fatty acids in carcinogenesis. Med. Oncol. Tumor. Pharmacother. 7, 173-176.
  42. Lanier, A. P., T. R. Bender, W. J. Blot, J. F. Fraumeni, Jr., and W. B. Hurlburt. 1976. Cancer incidence in Alaska natives. Int. J. Cancer 18, 409-12. https://doi.org/10.1002/ijc.2910180403
  43. Laurier, J. 2006. Alarming increase in cancer rates. WHO report 21, 02.
  44. Lim, K., C. Han, L. Xu, K. Isse, A. J. Demetris, and T. Wu. 2008. Cyclooxygenase-2-derived prostaglandin E2 activates beta-catenin in human cholangiocarcinoma cells: evidence for inhibition of these signaling pathways by omega 3 polyunsaturated fatty acids. Cancer Res. 68, 553-560. https://doi.org/10.1158/0008-5472.CAN-07-2295
  45. Liotta, L. A. 1984. Tumor invasion and metastases: role of the basement membrane. Warner-Lambert Parke-Davis Award lecture. Am. J. Pathol. 117, 339-348.
  46. Liu, G., D. M. Bibus, A. M. Bode, W. Y. Ma, R. T. Holman, and Z. Dong. 2001. Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells. Proc. Natl. Acad. Sci. USA 98, 7510-7515. https://doi.org/10.1073/pnas.131195198
  47. Llor, X., E. Pons, A. Roca, M. Alvarez, J. Mane, F. Fernandez-Banares, and M. A. Gassull. 2003. The effects of fish oil, olive oil, oleic acid and linoleic acid on colorectal neoplastic processes. Clin. Nutr. 22, 71-79. https://doi.org/10.1054/clnu.2002.0627
  48. Lyon. 2003. World Health Organization. The World Cancer Report.
  49. Maillard, V., P. Bougnoux, P. Ferrari, M. L. Jourdan, M. Pinault, F. Lavillonniere, G. Body, O. Le Floch, and V. Chajes. 2002. N-3 and N-6 fatty acids in breast adipose tissue and relative risk of breast cancer in a case-control study in Tours, France. Int. J. Cancer 98, 78-83. https://doi.org/10.1002/ijc.10130
  50. McCarty, M. F. 1996. Fish oil may impede tumour angiogenesis and invasiveness by down-regulating protein kinase C and modulating eicosanoid production. Med. Hypotheses 46, 107-115. https://doi.org/10.1016/S0306-9877(96)90009-2
  51. Miller, M., M. Motevalli, D. Westphal, and P. O. Kwiterovich, Jr. 1993. Incorporation of oleic acid and eicosapentaenoic acid into glycerolipids of cultured normal human fibroblasts. Lipids 28, 1-5. https://doi.org/10.1007/BF02536351
  52. Minami, Y., Y. Nishino, Y. Tsubono, I. Tsuji, and S. Hisamichi. 2006. Increase of colon and rectal cancer incidence rates in Japan: trends in incidence rates in Miyagi Prefecture, 1959-1997. J Epidemiol. 16, 240-248. https://doi.org/10.2188/jea.16.240
  53. Minoura, T., T. Takata, M. Sakaguchi, H. Takada, M. Yamamura, K. Hioki, and M. Yamamoto. 1988. Effect of dietary eicosapentaenoic acid on azoxymethane-induced colon carcinogenesis in rats. Cancer Res. 48, 4790-4794.
  54. Moon, R. T., A. D. Kohn, G. V. De Ferrari, and A. Kaykas. 2004. WNT and beta-catenin signalling: diseases and therapies. Nat. Rev. Genet. 5, 691-701. https://doi.org/10.1038/nrg1427
  55. Nagase, H. and J. F. Woessner, Jr. 1999. Matrix metalloproteinases. J. Biol. Chem. 274, 21491-21494. https://doi.org/10.1074/jbc.274.31.21491
  56. Narayanan, B. A., N. K. Narayanan, D. Desai, B. Pittman, and B. S. Reddy. 2004. Effects of a combination of docosahexaenoic acid and 1,4-phenylene bis(methylene) selenocyanate on cyclooxygenase 2, inducible nitric oxide synthase and beta-catenin pathways in colon cancer cells. Carcinogenesis 25, 2443-2449. https://doi.org/10.1093/carcin/bgh252
  57. Narayanan, B. A., N. K. Narayanan, B. Simi, and B. S. Reddy. 2003. Modulation of inducible nitric oxide synthase and related proinflammatory genes by the omega-3 fatty acid docosahexaenoic acid in human colon cancer cells. Cancer Res. 63, 972-979.
  58. Norat, T., A. Lukanova, P. Ferrari, and E. Riboli. 2002. Meat consumption and colorectal cancer risk: an estimate of attributable and preventable fractions. IARC. Sci. Publ. 156, 223-225.
  59. Okada, Y., Y. Gonoji, K. Naka, K. Tomita, I. Nakanishi, K. Iwata, K. Yamashita, and T. Hayakawa. 1992. Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J. Biol. Chem. 267, 21712-21719.
  60. Paulsen, J. E., I. K. Elvsaas, I. L. Steffensen, and J. Alexander. 1997. A fish oil derived concentrate enriched in eicosapentaenoic and docosahexaenoic acid as ethyl ester suppresses the formation and growth of intestinal polyps in the Min mouse. Carcinogenesis 18, 1905-1910. https://doi.org/10.1093/carcin/18.10.1905
  61. Reddy, B. S. 2004. Omega-3 fatty acids in colorectal cancer prevention. Int. J. Cancer 112, 1-7. https://doi.org/10.1002/ijc.20320
  62. Reddy, B. S. and H. Maruyama. 1986. Effect of dietary fish oil on azoxymethane-induced colon carcinogenesis in male F344 rats. Cancer Res. 46, 3367-3370.
  63. Rose, D. P. and J. M. Connolly. 1990. Effects of fatty acids and inhibitors of eicosanoid synthesis on the growth of a human breast cancer cell line in culture. Cancer Res. 50, 7139-7144.
  64. Rose, D. P. and J. M. Connolly. 2000. Regulation of tumor angiogenesis by dietary fatty acids and eicosanoids. Nutr. Cancer 37, 119-127. https://doi.org/10.1207/S15327914NC372_1
  65. Roynette, C. E., P. C. Calder, Y. M. Dupertuis, and C. Pichard. 2004. n-3 polyunsaturated fatty acids and colon cancer prevention. Clin. Nutr. 23, 139-151. https://doi.org/10.1016/j.clnu.2003.07.005
  66. Rubinfeld, B., B. Souza, I. Albert, O. Muller, S. H. Chamberlain, F. R. Masiarz, S. Munemitsu, and P. Polakis. 1993. Association of the APC gene product with beta-catenin. Science 262, 1731-1734. https://doi.org/10.1126/science.8259518
  67. Sandhu, M. S., I. R. White, and K. McPherson. 2001. Systematic review of the prospective cohort studies on meat consumption and colorectal cancer risk: a meta-analytical approach. Cancer Epidemiol Biomarkers Prev. 10, 439-446.
  68. Schonberg, S. A., A. G. Lundemo, T. Fladvad, K. Holmgren, H. Bremseth, A. Nilsen, O. Gederaas, K. E. Tvedt, K. W. Egeberg, and H. E. Krokan. 2006. Closely related colon cancer cell lines display different sensitivity to polyunsaturated fatty acids, accumulate different lipid classes and downregulate sterol regulatory element-binding protein 1. Febs. J. 273, 2749-2765. https://doi.org/10.1111/j.1742-4658.2006.05292.x
  69. Schwartz, S. A., A. Hernandez, and B. Mark Evers. 1999. The role of NF-kappaB/IkappaB proteins in cancer: implications for novel treatment strategies. Surg. Oncol. 8, 143-153. https://doi.org/10.1016/S0960-7404(00)00012-8
  70. Simonsen, N., P. van't Veer, J. J. Strain, J. M. Martin-Moreno, J. K. Huttunen, J. F. Navajas, B. C. Martin, M. Thamm, A. F. Kardinaal, F. J. Kok, and L. Kohlmeier. 1998. Adipose tissue omega-3 and omega-6 fatty acid content and breast cancer in the EURAMIC study. European Community Multicenter Study on Antioxidants, Myocardial Infarction, and Breast Cancer. Am. J. Epidemiol. 147, 342-352. https://doi.org/10.1093/oxfordjournals.aje.a009456
  71. Simopoulos, A. P. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56, 365-379. https://doi.org/10.1016/S0753-3322(02)00253-6
  72. Song, K. S. and K. Lim. 2008. Tumorigenicity and angiogenesis of pancreatic cancer are inhibitied in Fat1 transgenic mice. Int. Conferance Anticancer Res. 406, 3380.
  73. Spector, A. A. 1999. Essentiality of fatty acids. Lipids. 34 Suppl, S1-S3. https://doi.org/10.1007/BF02562220
  74. Stewart, B. W. and P. Kleihues. 2003. Increase in global cancer rates. The World Cancer report. 2, 4.
  75. Su, L. K., B. Vogelstein, and K. W. Kinzler. 1993. Association of the APC tumor suppressor protein with catenins. Science 262, 1734-1737. https://doi.org/10.1126/science.8259519
  76. Suzuki, K., J. J. Enghild, T. Morodomi, G. Salvesen, and H. Nagase. 1990. Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry 29, 10261-10270. https://doi.org/10.1021/bi00496a016
  77. Szymczak, M., M. Murray, and N. Petrovic. 2008. Modulation of angiogenesis by omega-3 polyunsaturated fatty acids is mediated by cyclooxygenases. Blood 111, 3514-3521. https://doi.org/10.1182/blood-2007-08-109934
  78. Takahashi, M., M. Fukutake, T. Isoi, K. Fukuda, H. Sato, K. Yazawa, T. Sugimura, and K. Wakabayashi. 1997. Suppression of azoxymethane-induced rat colon carcinoma development by a fish oil component, docosahexaenoic acid (DHA). Carcinogenesis 18, 1337-1342. https://doi.org/10.1093/carcin/18.7.1337
  79. Takahashi, M., T. Minamoto, N. Yamashita, T. Kato, K. Yazawa, and H. Esumi. 1994. Effect of docosahexaenoic acid on azoxymethane-induced colon carcinogenesis in rats. Cancer Lett. 83, 177-184. https://doi.org/10.1016/0304-3835(94)90316-6
  80. Tong, Q., L. Zheng, L. Lin, B. Li, D. Wang, C. Huang, G. M. Matuschak, and D. Li. 2006. Participation of the PI-3K/Akt-NF-kappa B signaling pathways in hypoxia-induced mitogenic factor-stimulated Flk-1 expression in endothelial cells. Respir. Res. 7, 101. https://doi.org/10.1186/1465-9921-7-101
  81. Trifan, O. C. and T. Hla. 2003. Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. J. Cell Mol. Med. 7, 207-222. https://doi.org/10.1111/j.1582-4934.2003.tb00222.x
  82. Weldon, S. M., A. C. Mullen, C. E. Loscher, L. A. Hurley, and H. M. Roche. 2007. Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid. J. Nutr. Biochem. 18, 250-258. https://doi.org/10.1016/j.jnutbio.2006.04.003
  83. Willett, W. C., M. J. Stampfer, G. A. Colditz, B. A. Rosner, and F. E. Speizer. 1990. Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective study among women. N. Engl. J. Med. 323, 1664-1672. https://doi.org/10.1056/NEJM199012133232404
  84. Xia, S. H., J. Wang, and J. X. Kang. 2005. Decreased n-6/n-3 fatty acid ratio reduces the invasive potential of human lung cancer cells by downregulation of cell adhesion/invasion-related genes. Carcinogenesis 26, 779-784. https://doi.org/10.1093/carcin/bgi019
  85. Yoon, W. H., Y. J. Jung, T. D. Kim, G. Li, B. J. Park, J. Y. Kim, Y. C. Lee, J. M. Kim, J. I. Park, H. D. Park, Z. S. No, K. Lim, B. D. Hwang, and Y. S. Kim. 2004. Gabexate mesilate inhibits colon cancer growth, invasion, and metastasis by reducing matrix metalloproteinases and angiogenesis. Clin. Cancer Res. 10, 4517-4526. https://doi.org/10.1158/1078-0432.CCR-04-0084
  86. Yun, E. J., K. S. Song, J. S. Kim, J. Y. Heo, Y. J. Jung, C. Han, T. Wu, J. K. Kang, J. I. Park, G. R. Kweon, W. H. Yoon, B. D. Hwang, and K. Lim. 2008. DHA suppresses cell invasion through inhibitions of matrix metalloproteinases, vascular EGF and Cox-2 in breast cancer cells. AACR.
  87. Zhao, Y., S. Joshi-Barve, S. Barve, and L. H. Chen. 2004. Eicosapentaenoic acid prevents LPS-induced TNF-alpha expression by preventing NF-kappaB activation. J. Am. Coll. Nutr. 23, 71-78. https://doi.org/10.1080/07315724.2004.10719345

Cited by

  1. Protein-bound polysaccharide from Phellinus linteus inhibits tumor growth, invasion, and angiogenesis and alters Wnt/β-catenin in SW480 human colon cancer cells vol.11, pp.1, 2011, https://doi.org/10.1186/1471-2407-11-307
  2. Cytotoxic Mechanism of Docosahexaenoic Acid in Human Oral Cancer Cells vol.23, pp.5, 2013, https://doi.org/10.5352/JLS.2013.23.5.689