The Anti-diabetic Effects of Kocat-D1 on Streptozotocin-Induced Diabetic Rats

Kocat-D1의 streptozotocin으로 유도한 당뇨모델에 대한 항당뇨 활성

  • Won, Hye-Jin (Division of Drug and Toxicology, National Institute of Scientific Investigation) ;
  • Lee, Hyun-Sun (Department of Food and Nutrition, College of Health Science, Korea University) ;
  • Kim, Jong-Tak (BioBud Inc.) ;
  • Hong, Chung-Oui (Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Koo, Yun-Chang (Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Kwang-Won (Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University)
  • 원혜진 (국립과학수사연구소 약독물과) ;
  • 이현순 (고려대학교 보건과학대학 식품영양학과) ;
  • 김종탁 ((주)바이오버드) ;
  • 홍충의 (고려대학교 식품공학부) ;
  • 구윤창 (고려대학교 식품공학부) ;
  • 이광원 (고려대학교 식품공학부)
  • Received : 2009.10.10
  • Accepted : 2009.12.24
  • Published : 2010.04.30

Abstract

This study was conducted to investigate the anti-diabetic activity of Kocat-D1, which is widely used in traditional medicine to treat diabetes in Shandong, China. Sprague Dawley rats (8 weeks of age) were separated into 4 groups: a normal control, streptozotocin (STZ)-induced diabetic rat group (DM control), Kocat-D1-1 (diabetic rat treated with 0.25 g/kg/day hot water extract), and Kocat-D1-2 (diabetic rat treated with 1 g/kg/day hot water extract). After eight weeks of treatment, the fasting blood glucose levels of the Kocat-D1-1 ($334.3{\pm}32.9\;mg/dL$) and Kocat-D1-2 group ($259.5{\pm}35.0\;mg/dL$) were significantly lower when compared to the DM control group ($451{\pm}42.6\;mg/dL$). Furthermore, the levels of glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), albumin and high-density lipoprotein (HDL) cholesterol in the serum of the Kocat-D1-2 group were significantly normalized when compared to the DM control group. However, significant differences were not observed between the Kocat-D1-1 group and the DM control group. Histochemical staining of the liver of the Kocat-D1-2 group revealed no fat accumulation. The insulin level was significantly upregulated in the Kocat-D1-2 group ($0.13{\pm}0.02\;ng/mL$) when compared to the DM control group ($0.05{\pm}0.04\;ng/mL$). The relative volume of $\beta$-cells in the pancreas of the Kocat-D1-2 group ($49.4{\pm}4.2%$) also increased significantly when compared to the DM control group ($12.9{\pm}7.9%$). These results suggest that Kocat-D1 exerts an anti-hyperglycemic effect through the enhancement of insulin secretion.

STZ으로 당뇨를 유발 8주 후 당뇨대조군은 공복혈당이 $451{\pm}42.6\;mg/dL$인데 비해 Kocat-D1-1(Kocat-D1 추출물을 0.25 g/kg/day 투여한 군)에서는 $334.3{\pm}32.9\;mg/dL$, Kocat-D1-2(Kocat-D1 추출물을 1 g/kg/day 투여한 군)에서는 $259.5{\pm}35.0\;mg/dL$로 투여 농도에 의존적으로 당뇨대조군에 비해 유의적 수준으로 혈당이 낮아졌다. OGTT 검사에서도 180분 경과 후에도 당뇨대조군은 포도당 투여전보다 혈당이 $55.5{\pm}5.1\;mg/dL$ 높았으나 Kocat-D1-2는 $17.0{\pm}7.4\;mg/dL$로 유의적으로 낮아졌다. STZ에 의해 유도된 당뇨쥐는 정상대조군에 비해 혈장내의 GOT($411.3{\pm}31.3\;U/L$), GPT($162.3{\pm}23.2\;U/L$) 모두 현저히 증가하였다. 이에 비해 Kocat-D1-2 군에서는 GOT($247.0{\pm}33.4\;U/L$), GPT($116.3{\pm}17.4\;U/L$) 모두 유의적인 수준으로 당뇨대조군에 비해 감소하였다. 알부민 수치 또한 정상대조군 $3.9{\pm}0.1\;U/L$에 비해 당뇨대조군은 $2.7{\pm}0.3\;U/L$으로 낮아졌으나 Kocat-D1-2군에서는 $3.0{\pm}0.1\;U/L$로 증가하였다. HDL-콜레스테롤 수치 또한 정상대조군이 $26.8{\pm}3.9\;mg/dL$인데 비해 당뇨대조군은 $11.7{\pm}1.3\;mg/dL$로 낮아졌다. 그러나 Kocat-D1을 투여한 두 군 모두 각각 $22.3{\pm}2.0$, $26.8{\pm}1.2\;mg/dL$로 유의적인 수준으로 증가하였다. 간조직의 조직학적 관찰에서도 당뇨대조군의 경우 간세포사이에 지방구가 관찰되었으나, Kocat-D1-2는 거의 정상대조군과 유사하였으며 지방구를 관찰 할 수 없었다. 각 실험군의 혈액 중 인슐린 농도를 측정한 결과 정상대조군 $0.18{\pm}0.02\;ng/mL$인데 비해 당뇨대조군은 $0.05{\pm}0.04\;ng/mL$로 낮아졌으나 Kocat-D1-1은 $0.11{\pm}0.05$, Kocat-D1-2는 $0.13{\pm}0.02\;ng/mL$로 증가하였다. 췌장의 베타세포의 상대적 용적을 측정한 결과 Kocat-D1-2 군은 당뇨대조군의 $12.9{\pm}7.9%$에 비해 $49.4{\pm}4.2%$로 유의적인 수준으로 증가하였다. Kocat-D1-1군에서도 당뇨대조군보다 증가하는 경향은 보였으나 유의적인 차이는 없었다. Kocat-D1은 인슐린을 분비를 촉진시켜 혈당을 강하시키는 항당뇨효과를 가지고 있음을 알 수 있었다. 따라서 아직 명확한 학명 규명이 규명되지는 않았지만 Kocat-D1은 의약품 소재 및 기능성 식품 소재로서의 활용가능성이 있음을 본 연구를 통해 확인하였다.

Keywords

References

  1. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: Prevalence, numerical estimates, and projections. Diabetes Care 21: 1414-1431 (1998) https://doi.org/10.2337/diacare.21.9.1414
  2. McGill M, Felton A-M. New global recommendations: A multidisciplinary approach to improving outcomes in diabetes. Primary Care Diabetes 1: 49-55 (2007) https://doi.org/10.1016/j.pcd.2006.07.004
  3. IDF Diabetes Atlas. International diabetes federation. Brussels, Belgium (2003)
  4. Zhang W, Xu YC, Guo FJ, Meng Y, Li ML. Anti-diabetic effects of cinnamaldehyde and berberine and their impacts on retinolbinding protein 4 expression in rats with type 2 diabetes mellitus. Chin. Med. J. 121: 2124-2128 (2008)
  5. Fonseca V. The role of basal insulin therapy in patients with type 2 diabetes mellitus. Insulin 1: 51-60 (2006) https://doi.org/10.1016/S1557-0843(06)80010-2
  6. Lee HT, Park SY, Kim RY, Kwon HY, Shin US. Analysis of oral antidiabetic agents prescribing in the outpatients of community hospital. J. Korean Soc. of Health-Syst. Pharm. 24: 17-26 (2007)
  7. Angeli G, Alberini B. A new drug with hypoglycemic action in oral therapy of diabetes mellitus: N-tolyl-sulfonyl-N'-cyclohexyl urea (k386). Minerva Med. 49: 360-364 (1958)
  8. Aoki H, Kawanishi M, Nagano M. Therapy of diabetes mellitus with combination of sulfonyl urea and biguanide. Saishin Igaku. 24: 610-614 (1969)
  9. Hamelbeck H, Klein W, Zoltobrocki M, Schoffling K. Glibenclamide-insulin combination in the management of secondary failure of sulfonyl-urea medication. Dtsch. Med. Wochenschr. 107: 1581-1583 (1982) https://doi.org/10.1055/s-2008-1070169
  10. Arul B, Kothai R, Christina AJ. Hypoglycemic and antihyperglycemic effect of Semecarpus anacardium Linn in normal and streptozotocin-induced diabetic rats. Methods Find. Exp. Clin. Pharmacol. 26: 759-762 (2004) https://doi.org/10.1358/mf.2004.26.10.872556
  11. Bander A. Mechanism of action of hypoglycemic sulfonyl urea compounds. Dtsch. Med. Wochenschr. 84: 996-1002 (1959) https://doi.org/10.1055/s-0028-1113714
  12. Liang HJ, Suk FM, Wang CK, Hung LF, Liu DZ, Chen NQ, Chen YC, Chang CC, Liang YC. Osthole, a potential antidiabetic agent, alleviates hyperglycemia in db/db mice. Chem. Biol. Interact. 181: 309-315 (2009) https://doi.org/10.1016/j.cbi.2009.08.003
  13. Bailey CJ CD. Traditional plant medicines as treatments for diabetes. Diabetes Care 12: 553-564 (1989) https://doi.org/10.2337/diacare.12.8.553
  14. Gray AM, Flatt PR. Insulin-releasing and insulin-like activity of the traditional anti-diabetic plant Coriandrum sativum (coriander). Brit. J. Nutr. 81: 203-209 (1999) https://doi.org/10.1017/S0007114599000392
  15. Vaishya R, Singh J, Lal H. Effect of irbesartan on streptozotocin induced diabetic nephropathy: An interventionary study. Indian J. Clin. Biochem. 23: 195-197 (2008) https://doi.org/10.1007/s12291-008-0043-1
  16. Montilla P, Barcos M, Munoz MC, Bujalance I, Munoz-Castaneda JR, Tunez I. Red wine prevents brain oxidative stress and nephropathy in streptozotocin-induced diabetic rats. J. Biochem. Mol. Biol. 38: 539-544 (2005) https://doi.org/10.5483/BMBRep.2005.38.5.539
  17. Doumas B, Biggs H. Determination of serum albumin. Vol. 7, pp. 175-188. In: Standard Methods of Clinical Chemistry. Academic Press Inc., New York, NY, USA (1972)
  18. Bais R, Philcox M. Approved recommendation on IFCC methods for the measurement of catalytic concentration of enzymes. Part 8. IFCC method for lactate dehydrogenase (l-Lactate: $NAD^{+}$oxidoreductase, EC 1.1.1.27). International federation of clinical chemistry (IFCC). Eur. J. Clin. Chem. Clin. Biochem. 32: 639-655 (1994)
  19. Zick R, Hammer A, Otten G, Mitzkat HJ. Rapid radioimmunoassay for insulin and its application in localizing occult insulinomas by intraoperative pancreatic vein catheterization. Eur. J. Nucl. Med. 7: 85-87 (1982)
  20. Nakajima T, Deguchi T, Kagawa K, Hikita H, Ueda K, Katagishi T, Ohkawara T, Kakusui M, Kimura H, Okanoue T. Identification of apoptotic hepatocytes in situ in rat liver after lead nitrate administration. J. Gastroenterol. 30: 725-730 (1995) https://doi.org/10.1007/BF02349638
  21. Guz Y, Nasir I, Teitelman G. Regeneration of pancreatic $\beta$ cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology 142: 4956-4968 (2001) https://doi.org/10.1210/en.142.11.4956
  22. Fischer KJ, Stewart JK. Phenylethanolamine n-methyltransferase in the brains of streptozotocin diabetic rats. Endocrinology 119: 2586-2589 (1986) https://doi.org/10.1210/endo-119-6-2586
  23. Sexton WL. Skeletal muscle vascular transport capacity in diabetic rats. Diabetes 43: 225-231 (1994) https://doi.org/10.2337/diabetes.43.2.225
  24. Capeau J. Insulin resistance and steatosis in humans. Diabetes Metab. 34: 649-657 (2008) https://doi.org/10.1016/S1262-3636(08)74600-7
  25. Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S. The current state of serum biomarkers of hepatotoxicity. Toxicology 245: 194-205 (2008) https://doi.org/10.1016/j.tox.2007.11.021
  26. Kaviarasan K, Pugalendi KV. Influence of flavonoid-rich fraction from spermacoce hispida seed on ppar-alpha gene expression, antioxidant redox status, protein metabolism and marker enzymes in high-fat-diet fed stz diabetic rats. J. Basic Clin. Physiol. Pharmacol. 20: 141-158 (2009) https://doi.org/10.1515/JBCPP.2009.20.2.141
  27. Sung KC, Ryan MC, Wilson AM. The severity of nonalcoholic fatty liver disease is associated with increased cardiovascular risk in a large cohort of non-obese asian subjects. Atherosclerosis 203: 581-586 (2009) https://doi.org/10.1016/j.atherosclerosis.2008.07.024
  28. Tomita T, Sasaki S, Doull V, Bunag R, Kimmel JR. Pancreatic hormones in streptozotocin-diabetic rats. Int. J. Pancreatol. 1: 265-278 (1986)