Fabrication and Design of a Compact Narrow Band Pass Filter Using Slot Type Split Spiral Resonators

슬롯형 분할 나선형 공진기를 이용한 소형 협 대역통과 필터 설계 및 제작

  • 최동묵 (경북대학교 전자전기컴퓨터학부) ;
  • 김당오 (경북대학교 전자전기컴퓨터학부) ;
  • 조남이 (경북대학교 전자전기컴퓨터학부) ;
  • 김채영 (경북대학교 전자전기컴퓨터학부)
  • Received : 2009.09.10
  • Accepted : 2010.04.13
  • Published : 2010.04.25

Abstract

In this paper, a design method of the compact narrow band filter on the microstrip board is proposed using slot-type split spiral resonators. The design technique of this filter is based on cascading filter stages consisting of the combination of slot-type split spiral resonators, capacitive gaps between patches, and inductive grounded stubs with the meander configuration. By these means, it was possible to get the nearly symmetric frequency responses, adjustable bandwidths, compact sizes. And also excellent characteristic of the out-of-band rejection is achieved in contrast to the conventional filter design technique. The measured insertion loss shows good results about -3.47dB at the center frequency($f_0$=1GHz) and passband return loss is less than -12.62dB. The 3dB fractional bandwidth(FBW) is approximately 7.3%. The results of the frequency response measured on the fabricated band pass filter substrate show satisfactory agreement with the simulated frequency responses by the MWS(Microwave Studio) of CST in the region of interest.

본 논문에서는 슬롯형 분할 나선형 공진기를 이용하여 마이크로스트립 기판상에 구현될 소형 협 대역통과 필터설계기법을 제안한다. 이 필터의 설계기법은 슬롯형 분할 나선형 공진기, 패치사이의 용량성 갭, 그리고 미앤더 구조를 가진 유도성 스터브의 조합으로 구성된 필터 단들의 종속 연결에 근거를 두고 있다. 그 기법하에서 거의 대칭인 필터응답, 가변 대역폭, 그리고 소형필터를 구현할 수 있었다. 제안된 필터는 기존의 필터보다 저지대역에서 우수한 차단특성을 가졌다. 측정결과, 삽입손실은 중심주파수($f_0$=1GHz)에서 -3.47dB, 통과대역에서 -12.62dB 이하, 3dB 대역폭은 약 7.3%로 나타났다. 제작된 필터의 관심 영역 주파수응답은 CST사의 MWS(Microwave Studio)로 전산모의 실험된 값과 잘 일치되었다.

Keywords

References

  1. A. E. Atia and A. E. Williams, "A Solution for narrow-band coupled cavities," COMSAT Laboratories Tech. Memo. CL-39-70, Sept. 22, 1970.
  2. A. E. Atia and A. E. Williams, "Narrow band-pass waveguide filters," IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 258-265, Apr. 1972.
  3. A. E. Atia, A. E. Williams, and R. W. Newcomb, "Narrow-band multiple-coupled cavities synthesis," IEEE Trans. Circuits Systems, vol. CAS-21, pp. 649-655, Sept. 1974.
  4. R. J. Cameron and J. D. Rhodes, "Asymmetric realizations for dual-mode bandpass filters," IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp. 51-58, Jan. 1981.
  5. C. F. Chen, T. Y. Huang, and R. B. Wu, "Novel compact net-type resonators and their applications to microstrip bandpass filters," IEEE Trans. Microwave Theory Tech., vol. 54, no. 2, pp. 755-762, Feb. 2006. https://doi.org/10.1109/TMTT.2005.862626
  6. S. C. Lin, P. H. Deng, Y. S. Lin, C. H. Wang, and C. H. Chen, "Wide-stopband microstrip bandpass filters using dissimilar quarter-wavelength stepped-impedance resonators," IEEE Trans. Microwave Theory Tech., vol. 54, no. 3, pp. 1011-1018, Mar. 2006. https://doi.org/10.1109/TMTT.2005.864139
  7. Dong-Muk Choi. Dang-Oh Kim, and Che-Young Kim, "Design of a Compact Narrow Band Pass Filter Using the Rectangular CSRRs," PIERS ONLINE, vol. 5, no. 5, pp. 456-460, 2009. https://doi.org/10.2529/PIERS090219021508
  8. M. Gil, J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, "On the transmission properties of left-handed microstrip lines implemented by complementary split rings resonators," Int. J. Numerical Modelling, vol. 19, pp. 87-103, Mar. 2006. https://doi.org/10.1002/jnm.601
  9. K. Buell, H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Trans. Microwave Theory Tech., vol. 54, no. 1, pp. 135-146, Jan. 2006. https://doi.org/10.1109/TMTT.2005.860329
  10. L. Yousefi and O. M. Ramahi, "New artificial magnetic materials based on fractal hilbert curves," Antenna Technology : Small and Smart Antennas Metamaterials and Applications, IWAT International Workshop on 21-23, pp. 237-240, March 2007.
  11. J. S. Hong and M. J. Lancaster, Microwave Filter for RF/Microwave Applications, New York : John Wiley & Sons, pp. 56-61, 2001.
  12. J. D. Baena, J. Bonache, F. Martin, R. M. Sillerol, F. Falcone, T. Lopetegi, Miguel A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech., vol. 53, no. 4, pp. 1451-1461, Apr. 2005.