DOI QR코드

DOI QR Code

Characteristics of distribution and decomposition of organic matters in stream water and sewage effluent

하천수와 하수처리장 방류수의 유기물 분포 및 분해 특성

  • Seo, Hee-Jeong (Department of Environmental Research, Public Health and Environmental Institute of Gwangju) ;
  • Kang, Yeoung-Ju (Department of Environmental Research, Public Health and Environmental Institute of Gwangju) ;
  • Min, Kyoung-Woo (Department of Environmental Research, Public Health and Environmental Institute of Gwangju) ;
  • Lee, Kyoung-Seog (Department of Environmental Research, Public Health and Environmental Institute of Gwangju) ;
  • Seo, Gwang-Yeob (Department of Environmental Research, Public Health and Environmental Institute of Gwangju) ;
  • Kim, Seung-Ho (Department of Environmental Research, Public Health and Environmental Institute of Gwangju) ;
  • Paik, Kye-Jin (Department of Environmental Research, Public Health and Environmental Institute of Gwangju) ;
  • Kim, Seong-Jun (Department of Environmental Engineering, Chonnam National University)
  • 서희정 (광주광역시보건환경연구원 환경연구부) ;
  • 강영주 (광주광역시보건환경연구원 환경연구부) ;
  • 민경우 (광주광역시보건환경연구원 환경연구부) ;
  • 이경석 (광주광역시보건환경연구원 환경연구부) ;
  • 서광엽 (광주광역시보건환경연구원 환경연구부) ;
  • 김승호 (광주광역시보건환경연구원 환경연구부) ;
  • 백계진 (광주광역시보건환경연구원 환경연구부) ;
  • 김성준 (전남대학교 환경공학과)
  • Received : 2009.11.17
  • Accepted : 2010.02.04
  • Published : 2010.02.25

Abstract

This study was performed to investigate the distribution and decomposition characteristics of organic matter in stream water and sewage effluent located in Gwangju. Average of dissolved organic carbon (DOC) to total organic carbon (TOC) ratio was approximately 73.9% in the Youngsan river system. The concentration of refractory dossolved carbon (RDOC) was 3.7 mg/L corresponding to 80.9% of the DOC. The ratio of recalcitrant organic carbon was relatively higher than that of biodegradable organic carbon in stream. Oxidation efficiencies in the stream were 45.0% for BOD, 63.0% for $COD_{Mn}$ and 106.5% for CODcr. In case of sewage effluent was 33.6%, 65.7% and 136.1% respectively. Mean decomposition rate ($K_d$) of Youngsan river mainstream, its tributary sites and sewage effluent were about $0.042\;day^{-1}$, $0.043\;day^{-1}$ and $0.028\;day^{-1}$, respectively and the difference was not significant between the mainstream and its tributary sites (t-test, p>0.05). $K_d$ of the sewage effluent was lower than that of stream water.

광주지역 하천수와 하수처리장 방류수를 대상으로 유기물 분포 특성과 분해 특성을 파악하고자 하였다. 영산강 수계에서 TOC에서 DOC가 차지하는 비율은 평균 73.9% 정도를 보였다. DOC중 RDOC의 평균 농도는 3.7 mg/L였으며, 비율은 80.9%로 나타나 생분해성유기물에 비해 난분해성유기물의 비율이 높은 것으로 나타났다. 유기물 오염도 지표간 산화율을 비교한 결과 하천수에서는 BOD-C/TOC는 45.0%, $COD_{Mn}$-C/TOC는 63.0%, CODcr-C/TOC는 106.5%로 나타났다. 하수처리장 방류수의 경우는 각각 33.6%, 65.7%, 136.1%로 나타나 하천수에 비해 BOD의 산화율이 낮았다. 하천수 중의 DOC의 평균 분해속도($K_d$)는 영산강 본류에서 $0.042\;day^{-1}$, 지류하천에서 $0.043\;day^{-1}$로 조사되었으며 본류구간과 지류하천간에 유의적인 차이는 없었다(p>0.05). 하수처리장 방류수에서는 $K_d$$0.028\;day^{-1}$로 하천수에 비해 낮은 분해속도를 나타냈다.

Keywords

References

  1. Riemann, B. and Sondergaard, M., Regulation of bacterial secondary production in two eutrophic lakes and in experimental enclosures, J. Plankton Res., 8, 519-536(1986). https://doi.org/10.1093/plankt/8.3.519
  2. Thurman, E. M., Organic geochemistry of natural water, Dordrecht, The Netherland, 1985.
  3. Wetzel, R. G, Limnology: Lake and river ecosystems, Academic Press, San Diego, USA, 1984.
  4. Krasner, S. W., McGuire, M. H., Jacangelo, J. G., Patania, N. L., Reagan, K. M. and Aieta, E. M., The occurrence of disinfection by-products in US drinking water, J. of Amer. Water. Asso., 81, 41-53(1989).
  5. Haslam, P. L., BAL standardization and measurement of a cellular components. Eur. Resp. Rev., 8, 1066-1071 (1998).
  6. Wetzel. R. G., Limnology; Lake and river ecosystems, Academic Press, San Diego, USA, 2001.
  7. 장창원, 김재구, 김동환, 김범철, 박주현, 금강수계에서 수중 유기탄소의 분포와 분해속도, 한국물환경학회지, 24(2), 174-179(2008).
  8. 김재구, 김범철, 정성민, 장창원, 신명선, 이윤경, 한강수계 농경지역 하천과 산림지역 하천에서 DOM과 POM의 분포 및 안정탄소동위원소 조성비, 한국육수학회지, 40(1), 93-102(2007).
  9. 환경부, 수질오염공정시험기준(2008).
  10. 국립환경과학원, 정책결정자를 위한 수질관련 기준 비교분석, 환경부(2000).
  11. 김재구, 신명선, 장창원, 정성민, 김범철, 한강수계 주요하천과 호수내 TOC와 DOC분포 및 BOD와 COD의 산화율 비교, 한국물환경학회지, 23(1), 72-80(2007).
  12. Fukushima, T., Park, J. C., Imai, A., and Matsushige, K., dissolved organic carbon in a eutrophic lake, dynamics, biodegradability and origin, Aqua. Sci., 58(2), 139-157(1996). https://doi.org/10.1007/BF00877112
  13. Ogura, N., Rate and extent of decomposition of dissolved organic matter in surface seawater. Mar. Biol., 13, 89-93(1972). https://doi.org/10.1007/BF00366559
  14. 정남인, 광주천 유하거리별 수질변화 특성 및 예측, 전남대학교 석사학위논문, 2007.
  15. Koenings, J. P. and Hooper, F. F., In situ experiments on the dissolved and colloidal state of iron in an Acid Bog Lake, Limmnol. Oceanogr., 21, 684-696(1976). https://doi.org/10.4319/lo.1976.21.5.0684
  16. 이유희, 소양호 용존유기물의 분포 및 분해특성에 관한 연구, 이학석사학위논문, 강원대학교, 1998.
  17. Chin, Y. P., Aiken, G. R., and Danielsen, K. M., Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity, Environ. Sci. Technol, 31(6), 1630-1635(1997). https://doi.org/10.1021/es960404k
  18. 윤영삼, 유재정, 이철구, 김문수, 신찬기, 시기별 낙동강 본류의 용존유기물 분해특성, 대한상수도학회.한국물환경학회 공동 추계학술대회 논문집, 784-790(2006).
  19. 류동경, 배상득, 장재용, 박제철, 류재근, 낙동강수계 수질오염총량관리 대상물질에 관한 연구-TOC 유기물 중심으로, 한국물환경학회.대한상수도학회 공동 춘계학술발표회 논문집, 1181-1188(2006).
  20. Grieve, I, C. Seasonal, hydrological, and land management factors controlling dissolved organic carbon concentrations in the Loch Fleet catchments, southwest Scotland. Hydrol. Processes, 4, 231-239(1990). https://doi.org/10.1002/hyp.3360040304
  21. Meyer, J. L. Dissolved organic carbon dynamics in two subtropical blackwater rivers. Arch. Hydrobial., 108, 119-134(1986).
  22. Agbekodo, K. Utilisation des Resines Macroporeuses XAD-8 et XAD-4 pour I'extraction st la Caracterisation du Carbone Organique Dissous D'une eau de Barrage. Diplome d'Etudes Approfondies Chimie st Microbiologie de I'Eau, Universite de Poitiers, France., 1991.
  23. Croue, J. P., Korshin, G. V., Leenheer, J. A. and Benjamin, M. M. Isolation fractionation and characterization of natural organic matter in drinking water. AWWARF report., 1998.
  24. Marhaba, T. F. and Van, D. The variation of mass and disinfection by-product formation potential of dissolved organic matter fractions along a conventional surface water treatment plant. J. Has, Mat., A74, 133-147(2000).

Cited by

  1. Application of Regression Analysis Model to TOC Concentration Estimation - Osu Stream Watershed - vol.23, pp.3, 2014, https://doi.org/10.14249/eia.2014.23.3.187
  2. Physicochemical and Toxicological Properties of Effluent Organic Matters from Sewage and Industrial Treatment Plants vol.30, pp.1, 2014, https://doi.org/10.15681/KSWE.2014.30.1.080
  3. Effects of Gumi City Sewage Treatment Effluent in the Downstream Nutrient Matter: Comparison of Daily Loading vol.22, pp.12, 2013, https://doi.org/10.5322/JESI.2013.22.12.1643
  4. Management of TOC and COD Organic Matter of Effluents in Sewage Treatment Plants vol.27, pp.4, 2018, https://doi.org/10.5322/JESI.2018.27.4.261