DOI QR코드

DOI QR Code

Analytical trend of perfluorinated compounds in environmental and biota samples

환경 및 생체시료 중 과불화 화합물의 분석 동향

  • Lee, Won-Woong (College of Pharmacy & Kyung Hee East-West Pharmaceutic Research Institute, Kyung Hee University) ;
  • Chang, Won-Hee (College of Pharmacy & Kyung Hee East-West Pharmaceutic Research Institute, Kyung Hee University) ;
  • Pyo, Hee-Soo (Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology) ;
  • Kang, Tae-Seok (Korea Food & Drug Administration) ;
  • Hong, Jong-Ki (College of Pharmacy & Kyung Hee East-West Pharmaceutic Research Institute, Kyung Hee University)
  • 이원웅 (경희대학교 약학대학 약학과 & 경희동서약학연구소) ;
  • 장원희 (경희대학교 약학대학 약학과 & 경희동서약학연구소) ;
  • 표희수 (한국과학기술연구원 융합오믹스센터) ;
  • 강태석 (식품의약품 안전청) ;
  • 홍종기 (경희대학교 약학대학 약학과 & 경희동서약학연구소)
  • Received : 2010.04.16
  • Accepted : 2010.07.04
  • Published : 2010.08.25

Abstract

Perfluorinated compounds have characteristics of resistance to heat, acidic, basic conditions and also resist water, oil, grease, pollutant. Futhermore they are used by various industrial material, nowadays, they produced in large scale for indutrial and commercial areas. However, they also resist metabolizing and degrading in environmental system (plant, animal, even human body). Moreover, in animal's bodies, PFCs can be accumulated in organ (eg; liver) and lead to liver cell necrosis even oncogenesis. Perfluorinated compounds are newly registered as new persistent organic pollutants (POPs) on Stockholm convention in 2009. Therefore necessity for analytical methodology for determination of PFCs in various environmental samples is even more increased. This study discussed sample preparation and instrumental conditions for the analysis of PFCs in environmental and biota samples.

과불화 화합물(perfluorinated compounds, PFCs)은 열과 산성, 염기 등과 같은 화학적 조건에 높은 안정성을 갖고 있을 뿐만 아니라 발수성, 발유성, 방오성과 제품 친화적인 특징 때문에 다양한 산업소재로 활용되고 있으며, 근래에 이르러서는 대규모로 생산되고 있는 산업제품이다. 그러나 난분해성으로 인하여 환경 내에 잔류하여 전세계적으로 널리 분포하고 있을 뿐만 아니라 인체나 동식물에 이르는 생물체에 이르기까지 오염되어 분포하고 있다. 또한 인체를 비롯한 생물체에 장기적으로 축적될 시 암등을 유발할 가능성이 있다고 보고됨에 따라 이에 대한 관심이 증가하고 있다. 최근 스톡홀름 협약에서 과불화 화합물을 새로운 환경지속성오염물질(persistent organic pollutants, POPs)로 규정함에 따라 이에 대한 분석법의 중요성이 대두되고 있다. 본 연구에서는 다양한 환경 및 생체 시료 내에서 과불화 화합물의 분석법에 대한 연구의 중요성 및 문제점과 더불어 최근 연구 동향을 소개하였다.

Keywords

References

  1. B. D. Key, R. D. Howell and C. S. Criddle, Environ. Sci. Technol., 31, 2445(1997). https://doi.org/10.1021/es961007c
  2. R. Renner, Environ. Sci. Technol., 35, 154A(2001). https://doi.org/10.1021/es012317k
  3. L. Cui, Q. Zhou, C. Liao, J. Fu and G. Jiang, Arch. Environ. Contam. Toxicol., 56, 338(2009). https://doi.org/10.1007/s00244-008-9194-6
  4. J. L. Newsted, S. A. Beach, S. P. Gallagher and J. P. Giesy, Arch. Environ. Contam. Toxicol., 50, 411(2006). https://doi.org/10.1007/s00244-005-1137-x
  5. C. Lau, K. Anitole, C. Hodes, D. Lai, A. Pfahles-Hutchens and J. Seed, Toxicol. Sci., 99(2), 366(2007). https://doi.org/10.1093/toxsci/kfm128
  6. Stockholm convention, Perfluorooctane sulfonic acid (PFOS), its salts and perfluorooctane sulfonyl fluoride (PFOS-F), decision SC-4/17, Annex B, Stockholm convention, Geneva, Switzerland, 2009
  7. US EPA, Perfluorooctyl sulfonates. Proposed significant new use rule, 40 CFR Part 721, US EPA, Washington DC, 2002.
  8. OECD, Co-operation on existing chemicals-Hazard assessment of perfluorooctane sulfonate and its salts. Environment Directorate Joint Meeting of the Chemicals Committe and the Working Party on Chemicals, Pesticides and Biotechnology, Organisation for Economic Co-operation and Development, Paris, 2002.
  9. EU, Directive 2006/122/ECOF, the European Parliament and of the Council, Off. J. Eur. Union, L372, 32(2006).
  10. E. Kissa, Fluorinated surfactants: synthesis, properties, applications. Marcel Dekker, New York, 1994.
  11. 3M, Sulfonated perfluorochemicals in the environment: Sources, dispersion, fate and effects. 3M, St. Paul, MN, 2000.
  12. C. A. Moody and J. A. Field, Environ. Sci. Technol., 33, 2800(1999). https://doi.org/10.1021/es981355+
  13. C. A. Moody, W. C. Kwan, J. W. Martin, D. C. G. Muir and S. A. Mabury, Anal. Chem., 73, 2200(2001). https://doi.org/10.1021/ac0100648
  14. C. A. Moody, J. W. Martin, W. C. Kwan, D. C. G. Muir and S. A. Mabury, Environ. Sci. Technol., 36, 545(2002). https://doi.org/10.1021/es011001+
  15. H. F. Schrder, J. Chromatogr. A, 1020, 131(2003). https://doi.org/10.1016/S0021-9673(03)00936-1
  16. M. M. Schultz, D. F. Barofsky and J. A. Field, Environ. Eng. Sci., 20, 487(2003). https://doi.org/10.1089/109287503768335959
  17. E. Kissa, Fluorinated surfactants and repellents. Marcel Dekker, New York, 1994.
  18. G. T. Tomy, S. A. Tittlemier, V. P. Palace, W. R. Budakowski, E. Braekevelt, L. Brinkworth and K. Friesen, Environ. Sci. Technol., 38, 758(2004).
  19. S. Taniyasu, K. Kannan, U. Horii, N. Hanari and N. Yamashita, Environ. Sci. Technol., 37, 2634(2003). https://doi.org/10.1021/es0303440
  20. S. Taniyasu, K. Kannan, M. K. So, A. Gulkowska, E. Sinclair, T. Okazawa and N. Yamashita, J. Chromatogr. A, 1093, 89(2005). https://doi.org/10.1016/j.chroma.2005.07.053
  21. M. Villagrasa, M. L. Alba and D. Barcel, Anal. Bioanal. Chem., 386, 953(2006). https://doi.org/10.1007/s00216-006-0471-9
  22. H. Lehmler, Chemosphere, 58, 1471(2005). https://doi.org/10.1016/j.chemosphere.2004.11.078
  23. M. J. A. Dinglasan, Y. Ye, E. A. Edwards and S. A. Mabury, Environ. Sci. Technol., 38, 2857(2004). https://doi.org/10.1021/es0350177
  24. N. L. Stock, F. K. Lau, D. A. Ellis, J. W. Martin, D. C. G. Muir and S. A. Mabury, Environ. Sci. Technol., 38, 991(2004). https://doi.org/10.1021/es034644t
  25. D. F. Hagen, J. Belisle, J. D. Johnson and P. Venkateswarlu, Anal. Biochem., 118, 336(1981). https://doi.org/10.1016/0003-2697(81)90591-1
  26. A. Krrman, B. Bavel, U. Jrnberg, L. Hardell and G. Lindstrm, Anal. Chem., 77, 864(2005). https://doi.org/10.1021/ac049023c
  27. N. Yamashita, K. Kannan, S. Taniyasu, Y. Horii, T. Okazawa, G. Petrick and T. Gamo, Environ. Sci. Technol., 38, 5522(2004). https://doi.org/10.1021/es0492541
  28. K. Inoue, F. Okada, R. Ito, S. Kato, S. Sasaki, S. Nakajima, A. Uno, Y. Saijo, F. Sata, Y. Yoshimura, R. Kishi and H. Nakazawa, Environ. Health. Perspect., 112, 1204(2004). https://doi.org/10.1289/ehp.6864
  29. R. G. Luthy, G. R. Alken, M. L. Brusseau, S. D. Cunningham, P. M. Gschwend, J. J. Pignatello, M. Reinhard, S. J. Traina, Jr. W. J. Wever and J. C. Westall, Environ. Sci. Technol., 31, 3341(1997). https://doi.org/10.1021/es970512m
  30. J. C. Westall, H. Chen, W. Zhang, and B. J. Brownawell, Environ. Sci. Technol., 33, 3110(1999). https://doi.org/10.1021/es9804316
  31. C. P. Higgins, J. A. Field, C. S. Criddle and R. G. Luthy, Environ. Sci. Technol., 39, 3946(2005). https://doi.org/10.1021/es048245p
  32. P. D. Jones, W. Hu, W. Coen, J. L. Newsted and J. P. Giesy, Environ. Toxicol. Chem., 22, 2639(2003). https://doi.org/10.1897/02-553
  33. A. Holm, S. T. Wilson, P. Molander, E. Lundanes and T. Greibrokk, J. Sep. Sci., 27, 1071(2004). https://doi.org/10.1002/jssc.200301647
  34. Z. Kuklenyik, J. A. Reich, J. S. Tully, L. L. Needhan and A. M. Calafat, Environ. Sci. Technol., 38, 3698(2004). https://doi.org/10.1021/es040332u
  35. J. Belisle and D. F. Hagen, Anal. Biochem., 101, 369(1980). https://doi.org/10.1016/0003-2697(80)90202-X
  36. K. Inoue, F. Okada, R. Ito, M. Kawaguchi, N. Okanouchi and H. Nakazawa, J. Chromatogr. B, 810, 49(2004). https://doi.org/10.1016/j.jchromb.2004.07.014
  37. K. Kannan, K. J. hansen, T. L. Wade and J. P. Giesy, Arch. Environ. Contam. Toxicol., 42, 313(2002). https://doi.org/10.1007/s00244-001-0003-8
  38. K. Kannan, J. C. Franson, W. W. Bowerman, K. J. Hansen, P. D. Jones and J. P. Giesy, Environ. Sci. Technol., 35, 3065(2001). https://doi.org/10.1021/es001935i
  39. K. Kannan, J. Koistinen, K. Beckmen, T. Evans, J. F. Gorzelany, K. J. Hansen, P. D. Jones, E. Helle, M. Nyman and J. P. Giesy, Environ. Sci. Technol., 35, 1593(2001). https://doi.org/10.1021/es001873w
  40. K. Kannan, J. W. Choi, N. Iseki, K. Senthilkumar, D. H. Kim, S. Masunaga and J. P. Giesy, Chemosphere, 49, 225(2002). https://doi.org/10.1016/S0045-6535(02)00304-1
  41. G. W. Olsen, T. R. Church, E. B. Larson, G. Belle, J. K. Lundberg, K. J. Hansen, J. M. Burris, J. H. Mandeland L. R. Zobel, Chemosphere, 54, 1599(2004). https://doi.org/10.1016/j.chemosphere.2003.09.025
  42. K. J. Hansen, L. A. Clemen, M. E. Ellefson and H. O. Johnson, Environ. Sci. Technol., 35, 766(2001). https://doi.org/10.1021/es001489z
  43. US EPA, Perfluorooctane sulfonate: Current summary of human sera, health and toxicology data (Doc: AR226-0048). US EPA, Washington DC, 1999.
  44. G. W. Olsen, K. J. Hansen, L. A. Stevenson, J. M. Burris and J. H. Mandel, Environ. Sci. Technol., 37, 888(2003). https://doi.org/10.1021/es020955c
  45. US EPA, Draft of hazard assessment of perfluorooctanoic acid and its salts (Doc: AR226-1079). US EPA, Washington DC, 2002.
  46. J. P. Giesy and K. Kannan, Environ. Sci. Technol., 35, 1339(2001). https://doi.org/10.1021/es001834k
  47. K. Kannan, J. Newsted, R. S. Halbrook and J. P. Giesy, Environ. Sci. Technol., 36, 2566(2002). https://doi.org/10.1021/es0205028
  48. P. de Voogt and M. Sez, Trends. Anal. Chem., 25, 326(2006). https://doi.org/10.1016/j.trac.2005.10.008
  49. J. W. Martin, D. C. G. Muir, C. A. Moody, D. A. Ellis, W. C. Kwan, K. R. Solomon and S. A. Mabury, Anal. Chem., 74, 584(2002). https://doi.org/10.1021/ac015630d
  50. G. Yamamoto, K. Yoshitake, T. Sato, T. Kimura and T. Ando, Anal. Biochem., 182, 371(1989). https://doi.org/10.1016/0003-2697(89)90610-6
  51. C. A. Moody and J. A. Field, Environ. Sci. Technol., 34, 3864(2000). https://doi.org/10.1021/es991359u
  52. M. Hudlicky and A. E. Pavlath, Chemistry of organic fluorine compounds II: A critical review. American Chemical Society, Washington DC, 1995.
  53. J. March, Advanced organic chemistry, 3rd edn. Wiley, New York, 1985.
  54. D. W. Kuehl and B. Rozynov, Rapid. Commun. Mass. Spectrom., 17, 2364(2003). https://doi.org/10.1002/rcm.1181
  55. K. J. Hansen, H. O. Johnson, J. S. Eldridge, J. L. Butenhoff and L. A. Dick, Environ. Sci. Technol., 36, 1681 (2002). https://doi.org/10.1021/es010780r
  56. I. Langlois and M. Oehme, Organohalogen Compd., 66, 3973(2004).
  57. G. Lindstrm, A. Krrman and B. Bavel, J. Chromatogr. A, 1216, 394(2009). https://doi.org/10.1016/j.chroma.2008.10.091
  58. M. M. Schultz, D. F. Barofsky and J. A. Field, Environ. Sci. Technol., 40, 289(2006). https://doi.org/10.1021/es051381p
  59. N. Riddell, G. Arsenault, J. P., Benskin, B, Chittim, J. W. Martin, A. McAlees and R. McCrindle, Environ. Sci. Technol., 43, 7902(2009). https://doi.org/10.1021/es901261v
  60. B. Boulanger, J. Vargo, J. L. Schnoor and K. C. Hornbuckle, Environ. Sci. Technol., 38, 4064(2004). https://doi.org/10.1021/es0496975
  61. C. Sottani and C. Minoia, Rapid. Commun. Mass. Spectrom., 16, 650(2002). https://doi.org/10.1002/rcm.620
  62. M. Takino, S. Daishima and T. Nakahara, Rapid. Commun. Mass. Spectrom., 17, 383(2003). https://doi.org/10.1002/rcm.937
  63. E. Chan, M. Sandhu, J. P. Benskin, M. Ralitsch, N. Thibault, D. Birkholz and J. W. Martin, Rapid. Commun. Mass. Spectrom., 23, 1405(2009). https://doi.org/10.1002/rcm.4012

Cited by

  1. Chemical Structural Approach to Understand Global Prohibition on Perfluorinated Compounds and their Uses vol.28, pp.3, 2016, https://doi.org/10.5764/TCF.2016.28.3.134
  2. Sample Preparation Method for Perfluorochemicals with LC-Tandem Mass Spectrometry in Agricultural Water vol.19, pp.1, 2015, https://doi.org/10.7585/kjps.2015.19.1.1