DOI QR코드

DOI QR Code

Adsorption characterisctics of mixed resins for perchlorate ion

혼합수지를 이용한 과염소산 이온의 흡착 특성

  • Park, Su-Min (Department of Chemistry, Yonsei University) ;
  • Jeon, Byong-Hun (Department of Environmental Engineering, Yonsei University) ;
  • Jeong, Hyuk (Department of Chemistry, Sookmyung Women's University) ;
  • Paeng, Ki-Jung (Department of Chemistry, Yonsei University)
  • Received : 2010.09.24
  • Accepted : 2010.10.04
  • Published : 2010.10.25

Abstract

The present research evaluates the efficiency of mixed resins between anion exchange resin and active carbon. We expected synergic effect from advantages of both adsorbents. Especially, this research focused on the removal of high cencentrated perchlorate ion from demilitarization solution. The total amount of the adsorbed perchlorate ion is increased considerably with mixed resins between mono functional anion exchange resin and granular active carbon from a single adsorbent. Results demonstated that this process not only improve the efficiency of adsorbing perchlorate, but save the time, space and cost for treating perchlotrate waste solution, because of reducing organic contaminant removing process. The interference effects from coexisting anions are not significant and can successfully applied to real demilitarization sample.

본 연구는 다양한 종류의 음이온 교환수지와 활성탄으로 구성된 새로운 혼합 수지를 과염소산 이온의 제거에 응용할 경우, 각 흡착제들이 갖는 장점으로 인한 시너지 효과를 얻을 수 있는지 조사하였다. 특히 비군사화 과정에서 발생하는 고 농도의 과염소산 암모늄용액을 대상으로 하였는데, 혼합수지 중단일-기능기 음이온 교환수지와 활성탄의 조합에서 과염소산 이온의 흡착 효율이 향상되었다. 일반적으로는 분리된 흡착조를 이용하여 유기 오염물과 무기 음이온의 제거가 시행되는데 반해, 본 연구에서 시도한 혼합 수지를 사용할 경우 한 번에 동시 제거가 가능하여 제거과정에서 필요한 시간, 공간 및 비용을 감소시키는 효과를 얻을 수 있었다. 또한, 시료 중의 공존 음이온들에 대한 방해효과도 낮고 음이온 교환 수지에 비하여 특별한 단점이 없으며 실제시료에도 효과적으로 응용이 가능하였다.

Keywords

References

  1. R. W. Gullick, M. W. LeChevallier and T. S. Barhorst, J. AWWA., 93 (1), 66-77(2001).
  2. ITRC (Interstate Technology Regulatory Council), (2005).
  3. NRC-National Academy of Science, The National Academies Press. (2005).
  4. Z. Li, F. X. Li, D. Byrd, G. M. Deyhle, D. E. Sesser, M. R. Skeels and S. H. Lamm, J. Occup. Environ. Med.. 42, 200-205(2000). https://doi.org/10.1097/00043764-200002000-00020
  5. K. S. Crump and J. P. Gibbs, Environ. Health Perspect., 113, 1001-1008(2005). https://doi.org/10.1289/ehp.7814
  6. B. Gu, G. M. Brown and C. C. Chiang, Environ. Sci. Technol., 41, 6277-6282 (2007). https://doi.org/10.1021/es0706910
  7. Perchlorate Treatment Technology Update, EPA 542-R-05-015 (2005).
  8. E. N. Coppola, Global Demil Symposium., may 17 (2007).
  9. B. E. Logan, Environ Sci. Technol, 35, 482A-487A (2001). https://doi.org/10.1021/es012564o
  10. GAO (U.S. Government Accountability Office). Perchlorate: A system to track sampling and cleanup results is needed. GAO-05-462 (2005).
  11. M. Y. Rusanova, P. Polaskova, M. Muzika and W. R. Fawcett, Electrochim. Acta., 51, 3097-3101(2006). https://doi.org/10.1016/j.electacta.2005.08.044
  12. R. Parette and F. S. Cannon, Water Res., 39, 4020-4028 (2005). https://doi.org/10.1016/j.watres.2005.07.024
  13. M.-W. Jung, K.-H. Ahn, Y.H. Lee, K.-P. Kim, J.-S. Rhee, J. T. Park and K.-J. Paeng, Microchemical J., 70(2), 123-131(2001). https://doi.org/10.1016/S0026-265X(01)00109-6

Cited by

  1. Electrochemical Reduction of Perchlorate Ion on Porous Carbon Electrodes Deposited with Iron Nanoparticles vol.18, pp.2, 2015, https://doi.org/10.5229/JKES.2015.18.2.81
  2. Study on desorption characteristics by mixed resins of active carbons and ion exchange resins for perchlorate ion vol.26, pp.1, 2013, https://doi.org/10.5806/AST.2013.26.1.011
  3. Trilite adsorption characteristics for perchlorate from Korean military facilities vol.37, pp.1, 2015, https://doi.org/10.3103/S1063455X1501004X
  4. A Study of Calibration Bias in the Analysis of Airborne Carbonyl Compounds between Gaseous and Liquid-phase Standards by High Performance Liquid Chromatography (HPLC) vol.28, pp.1, 2012, https://doi.org/10.5572/KOSAE.2012.28.1.052